欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

求超越,计算小于等于N的素数个数

程序员文章站 2022-03-13 09:52:05
...

        最近两天和群里的朋友讨论计算小于等于N的素数的个数。最直接的算法就是对于每一个数i,计算i除以从2到i的平方根,任意一个能除尽都说明i不是素数。但这种算法效率很低,还有很大的改进空间,也有不同方式改进。

        liuyh17211的思路是改进算法,根据算术基本定理,任何合数都可以表示为两个或多个素数的乘积,所以判断i是否是素数的只需要计算i除以从2到i的平方根之间的素数即可,另外java计算平方根的算法效率也不高,用这种思路改造之后的算法效率大幅提高,N为10000000时花费时间大约为朴素算法的1/7左右,而且这种方法对单核或多核的机器都有效。但这种算法只使用了一个线程,在多核处理器上没有充分利用资源。

        群友淘宝定山提供的思路是利用多线程,充分利用机器cpu,不过没有在算法上做太多优化,这种方式和宿主机的cpu核心数与使用的线程数密切相关,效果也非常明显,在他的四核机器上,使用8个线程的情况下,计算时间几乎是朴素方法的1/4多一点儿。总体来说多线程比起算法优化效果稍差一点儿。

        liuyh17211想如果把这两种优化方式结合起来效果应该会更好,首先单线程计算到N的平方根的素数数组,然后再用多线程分段计算素数个数,最后汇总。不过这种方式算法比较复杂,代码也很长。算法完成后,在我的双核四线程机器上用4个线程跑一下,所用时间大约是优化算法的40%。

        周末 liuyh17211把代码拿到家里的单核机器上测了一下,发现了另外一个情况,在单核的机器上,多线程的作用比较小,而优化算法的收益几乎没有损失。

        目前这个算法在多核机器上效率很高,在此征求效率更高的算法和改进思路,也欢迎到Java Developers 67844123交流。

 

附上所有代码,再次感谢淘宝定山提供的多线程计算代码:

 

import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.FutureTask;

/**
 * 计算素数个数方法对比
 * @author [email protected]
 */
public class PrimeCount {
	
	//线程数
	private static final int cpuNum = Runtime.getRuntime().availableProcessors();
	
	/**
	 * @param args
	 * @throws Exception 
	 */
	public static void main(String[] args) throws Exception {
		int max = 10000000;
		long begin = System.currentTimeMillis();
		int count = primaevalCounting(max);
		long end = System.currentTimeMillis();
		System.out.println("primaevalCounting prime count=" + count + ",time cost=" + (end - begin)+"ms");
		begin = System.currentTimeMillis();
		count = optimizedCounting(max);
		end = System.currentTimeMillis();
		System.out.println("optimizedCounting prime count=" + count + ",time cost=" + (end - begin)+"ms");
		begin = System.currentTimeMillis();
		count = multThreadPrimaevalCounting(max);
		end = System.currentTimeMillis();
		System.out.println("multThreadPrimaevalCounting prime count=" + count + ",time cost=" + (end - begin)+"ms");
		begin = System.currentTimeMillis();
		count = multThreadOptimizedcounting(max);
		end = System.currentTimeMillis();
		System.out.println("multThreadOptimizedcounting prime count=" + count + ",time cost=" + (end - begin)+"ms");
		
		System.exit(0);
	}
	
	/**
	 * 单线程 + 原始算法
	 * 最差的算法
	 * @param x
	 * @return
	 */
	public static int primaevalCounting(int x){
		
		int count = 0;
		
		for(int i = 2 ; i <= x ; i++){
			
			boolean isPrime = true;
			int sqrt = (int)Math.sqrt(i);
			
			for(int j = 2 ; j <= sqrt ; j++){
				if(i % j == 0){
					isPrime = false;
					break;
				}
			}
			
			if(isPrime){
				count++;
			}
		}
		
		return count;
	}
	
	/**
	 * 单线程 + 优化算法
	 * 在单核cpu上效率很高
	 * @param N
	 * @return
	 */
	private static int optimizedCounting(int N){
		
		int n = (int)Math.sqrt(N);
		int[] primeList = new int[n];
		int max = 0;
		  
		int primeCount = 0,d = 1,product = 1;
		boolean isPrime = true;
		
		for(int i = 2 ; i < N ; i++){
			
			if(i > product){
				d++;
				product = d*d;
			}  
		   
			for(int j = 0 ;  j < max ; j++){
				int primeNum = primeList[j];
				
				if(primeNum > d){ 
					break;
				}
				
				if(i%primeNum == 0){
					isPrime = false;
					break;
				}
			}
		   
			if(isPrime){
			    if(i < n){
			    	primeList[primeCount] = i;
			    	max++;
			    }
			    primeCount++;
			}
			
			isPrime = true;
		}
		  
		return primeCount;
	}
	
	/**
	 * 多线程 + 原始算法
	 * @param x
	 * @return
	 */
	public static int multThreadPrimaevalCounting(int x) throws Exception{
		
		int threadNum = cpuNum > 4 ? cpuNum : 4;
		int size = x/threadNum;
		int count = 0;
		
		List<PrimaevalCounting> countList = new ArrayList<PrimaevalCounting>();
		List<FutureTask<Integer>> taskList = new ArrayList<FutureTask<Integer>>();
		
		ExecutorService exec = Executors.newFixedThreadPool(5);
		PrimaevalCounting first = new PrimaevalCounting(2, size);
		countList.add(first);
		FutureTask<Integer> task = new FutureTask<Integer>(first);
		exec.submit(task);
		taskList.add(task);
		
		for(int i=1;i<threadNum;i++){
			
			PrimaevalCounting pre = countList.get(i-1);
			int begin = pre.end+1;
			int end = begin +size;
			
			if(end>x){
				end=x;
			}
			
			PrimaevalCounting counter = new PrimaevalCounting(begin, end);
			countList.add(counter);
			task = new FutureTask<Integer>(counter);
			
			exec.submit(task);
			taskList.add(task);
		}
		
		for(FutureTask<Integer> t : taskList){
			count += t.get();
		}
		
		return count;
	}
	
	/**
	 * 原始算法的多线程辅助类
	 * @author [email protected]
	 *
	 */
	public static class PrimaevalCounting implements Callable<Integer> {

		public int begin = 0;
		public int end = 0;

		public PrimaevalCounting(int begin, int end) {
			this.begin = begin;
			this.end = end;
		}

		@Override
		public Integer call() throws Exception {
			int c = 0;
			for (int i = begin; i <= end; i++) {
				int s = (int) Math.sqrt(i);
				boolean f = true;
				for (int j = 2; j <= s; j++) {
					if (i % j == 0) {
						f = false;
						break;
					}
				}
				if (f) {
					c++;
				}
			}
			return c;
		}
	}
	
	/**
	 * 多线程 + 优化算法计算
	 * @param x
	 * @return
	 * @throws Exception
	 */
	public static int multThreadOptimizedcounting(int x) throws Exception {
	
		int threadNum = cpuNum > 4 ? cpuNum : 4;
		int size = x / threadNum;
		int count = 0;
		
		List<OptimizedCounting> countList = new ArrayList<OptimizedCounting>();
		List<FutureTask<Integer>> taskList = new ArrayList<FutureTask<Integer>>();		
		int[] primeArray = initPrimeArray(x);
		
		ExecutorService exec = Executors.newFixedThreadPool(10);
		OptimizedCounting first = new OptimizedCounting((int)Math.sqrt(x) + 1, size, primeArray);
		countList.add(first);	
		
		FutureTask<Integer> task = new FutureTask<Integer>(first);
		exec.submit(task);		
		taskList.add(task);
		
		for(int i = 1 ; i < threadNum ; i++){
			
			OptimizedCounting pre = countList.get(i-1);
			int begin = pre.end+1;
			int end = begin +size;
			
			if(end > x){
				end=x;
			}
			
			OptimizedCounting counter = new OptimizedCounting(begin, end, primeArray);
			countList.add(counter);
			task = new FutureTask<Integer>(counter);
			
			exec.submit(task);
			taskList.add(task);
		}
		
		for(FutureTask<Integer> t : taskList){
			count += t.get();
		}
		
		return count + primeArray.length;
	}
	
	/**
	 * 初始化从2到x的平方根之间的素数,用于检查数是否是素数
	 * @param x
	 * @return
	 */
	private static int[] initPrimeArray(int x) {
		
		int n = (int)Math.sqrt(x);
		int[] primeArray = new int[n];
		int max = 0;
		
		int primeCount = 0,d = 1,product = 1;
		boolean isPrime = true;
		
		for(int i = 2 ; i <= n ; i++){
			
			if(i > product){
				d++;
				product = d * d;
			}		
			
			for(int j = 0 ;  j < max ; j++){
				int primeNum = primeArray[j];
				if(primeNum > d){ 
					break;
				}
				if(i % primeNum == 0){
					isPrime = false;
					break;
				}
			}
			
			if(isPrime){
				if(i < n){
					primeArray[primeCount] = i;
					max++;
				}
				primeCount++;
			}
			isPrime = true;
		}
		
		return Arrays.copyOf(primeArray, max);
	}

	/**
	 * 优化算法的多线程计算辅助类
	 * @author [email protected]
	 *
	 */
	public static class OptimizedCounting implements Callable<Integer> {
	
		private int begin = 0;
		private int end = 0;
		private int[] primeArray;
		
		public OptimizedCounting(int begin, int end, int[] primeArray) {
			this.begin = begin;
			this.end = end;
			this.primeArray = primeArray;
		}
		
		@Override
		public Integer call() throws Exception {
			
			int c = 0;
			//为了避免每次都求开平方,引入两个辅助数据
			int d = (int)Math.sqrt(begin) + 1,prod = begin;
			boolean isPrime = true;
			
			for (int i = begin ; i <= end ; i++) {
				if(i > prod){
					d++;
					prod = d * d;
				}
				
				for (int j = 0 ; j < primeArray.length && primeArray[j] <= d ; j++) {
					if (i % primeArray[j] == 0) {
						isPrime = false;
						break;
					}
				}
				if (isPrime) {
					c++;
				}
				isPrime = true;
			}
			return c;
		}	
	}
}

 

相关标签: 算法 多线程