tensorflow 安装
本文首发于我的微信公众号:赛克分享君,未经允许,不得随意转载。文末附有公众号二维码,感兴趣的话可以试着关注一下,关注了不喜欢欢迎随时取消,可以的话取关的时候告诉我原因,以让我改进,谢谢:)。
今天来说一下机器学习库 TensorFlow 的在 Ubuntu14.04 64位下的安装。
什么是 TensorFlow
关于什么是 TensorFlow ,这里引用一下官网的介绍:
TensorFlow™ is an open source software library for numerical computation using data flow graphs.
简单来说,就是机器学习(Machine Learning)的一个开源软件库,你可以方便的实现 CNN 等机器学习算法,并且使用 GPU 并行加速你的算法。
TensorFlow 起初是 Google Brain 小组为 Google 的研究和产品开发的一套工具,例如我们熟知的语音识别,Gmail,Google Photos 和 Google 搜索,随后于2015年11月9日在 Apache 2.0 开源许可证下 对外开源发布,现在稳定版本是0.9.0版本。
TensorFlow | |
开发者 | Google Brain Team |
稳定版本 | 0.9.0 |
编写语言 | Python, C++ |
平台 | Linux, Mac OS X |
类型 | 机器学习库 |
许可证 | Apache 2.0 |
官网 | www.tensorflow.org |
如上表所示,TensorFlow 对 Windows 平台没有原生支持(naive support),所以不建议在 Windows 下安装,但是也有方法。具体可参见这里。官方文档见这里,极客学院 Wiki 团队发起活动将其翻译成了中文,见这里,在这里赛克君向翻译者的艰辛劳动致以敬意。但是从我几天的学习来看,建议英文较好的童鞋看英文原版,中文翻译的和原文有些地方有差异,或者中英搭配看,先看中文,遇到不清楚有疑问的地方回过头去看英文对应地方。
安装步骤鸟瞰
这里仅介绍在 Ubuntu14.04 64位下的使用 Anaconda 的安装方式,其他安装方式请参见官方文档。
Anaconda 是一个 Python 的发布版本,其中内置了非常多的用于数值和科学计算的库,省得你去一个一个的自己安装,如果需要再安装库的话,可以用 conda 或者 pip 命令来安装,只不过有时候 conda 命令安装比较慢,因为他的服务器在国外,这时候你可以用 pip 命令试试。
a. 下载并安装 Anaconda
b. 创建一个 conda 环境
c. **这个 conda 环境并在里面安装 TensorFlow
d. 测试安装是否成功
e. 安装成功之后每次当你需要使用 TensorFlow 的时候,你需要重新**这个 conda 环境
a. 下载并安装 Anaconda
在这个页面选择适合你的版本(Python 版本和你的系统版本,这里赛克君选择 Python2.7 和 Linux 64位)并下载,遵照安装指导在你的电脑上安装 Anaconda 。
Anaconda for Linux
下载完成后安装的时候需要在终端进入你下载文件所在的文件夹才能执行上图中的命令,否则需要加上安装文件的绝对路径。
bash Anaconda2-4.1.1-Linux-x86_64.sh
遇到这个问题的时候,
解决方法是:
export PATH="/home/[your_name]/anaconda/bin:$PATH"
比如我这里是
export PATH=/home/deeplearning/anaconda2/bin:$PATH
b. 创建一个 conda 环境
创建一个名为 tensorflow 的 conda 环境。
如果你的 Python 版本为2.7,使用
conda create -n tensorflow python=2.7
如果你的 Python 版本是3.4,使用
conda create -n tensorflow python=3.4
如果你的 Python 版本是3.5,使用
conda create -n tensorflow python=3.5
此时你已经创建好了一个名为 tensorflow 的 conda 环境。
c. **这个conda环境并在里面安装TensorFlow
** tensorflow 环境,使用
CPU下:
source activate tensorflow
这时你的终端提示符会改变,在前面多了个(tensorflow),如下图:
然后就可以在里面安装 TensorFlow了,有两种方式 —— conda 和 pip。
使用 conda
使用 conda 安装目前仅支持 CPU 版本,也就是说不支持 GPU。使用下面命令安装: conda install -c conda-forge tensorflow
使用 pip
使用 pip 安装你可以选择仅 CPU 或者 支持 GPU。首先选择你要的版本,选择一个就行。
# Ubuntu/Linux 64-bit, CPU only, Python 2.7
(tensorflow)$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.10.0rc0-cp27-none-linux_x86_64.whl
# Ubuntu/Linux 64-bit, GPU enabled, Python 2.7
# Requires CUDA toolkit 7.5 and CuDNN v4. For other versions, see "Install from sources" below.
(tensorflow)$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow-0.10.0rc0-cp27-none-linux_x86_64.whl
# Mac OS X, CPU only, Python 2.7:
(tensorflow)$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-0.10.0rc0-py2-none-any.whl
# Mac OS X, GPU enabled, Python 2.7:
(tensorflow)$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/mac/gpu/tensorflow-0.10.0rc0-py2-none-any.whl
# Ubuntu/Linux 64-bit, CPU only, Python 3.4
(tensorflow)$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.10.0rc0-cp34-cp34m-linux_x86_64.whl
# Ubuntu/Linux 64-bit, GPU enabled, Python 3.4
# Requires CUDA toolkit 7.5 and CuDNN v4. For other versions, see "Install from sources" below.
(tensorflow)$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow-0.10.0rc0-cp34-cp34m-linux_x86_64.whl
# Ubuntu/Linux 64-bit, CPU only, Python 3.5
(tensorflow)$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.10.0rc0-cp35-cp35m-linux_x86_64.whl
# Ubuntu/Linux 64-bit, GPU enabled, Python 3.5
# Requires CUDA toolkit 7.5 and CuDNN v4. For other versions, see "Install from sources" below.
(tensorflow)$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow-0.10.0rc0-cp35-cp35m-linux_x86_64.whl
# Mac OS X, CPU only, Python 3.4 or 3.5:
(tensorflow)$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-0.10.0rc0-py3-none-any.whl
# Mac OS X, GPU enabled, Python 3.4 or 3.5:
(tensorflow)$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/mac/gpu/tensorflow-0.10.0rc0-py3-none-any.whl
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
然后安装,如果你用的是 Python 2,使用
pip install --ignore-installed --upgrade $TF_BINARY_URL
如果你用的是 Python 3,使用
pip3 install --ignore-installed --upgrade $TF_BINARY_URL
此时你已经在 tensorflow 环境中安装了 tensorflow。
(备注
2,安装tensorflow(cpu版)
对anaconda命令的熟悉,可以参考http://www.jianshu.com/p/d2e15200ee9b
官方的建议是即时你有gpu,但也可以先装一个cpu版,创建环境的命令为:conda create -n tensorflow python=3.6
(一定要指定python版本,我一开始没有写python=3.6,后面各种失败)
先下载安装包,下载路径为:https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.0.0-cp36-cp36m-linux_x86_64.whl
下载之后,将whl文件重命名为tensorflow-1.0.0-py3-none-linux_x86_64.whl,否则会出现
tensorflow-1.0.0-cp36-cp36m-linux_x86_64.whl is not a supported wheel on this platform.
- 1
一样的报错,具体参考https://github.com/tensorflow/tensorflow/issues/1990
然后进入环境并安装tensorflow(注意下图中的切记事项)
source activate tensorflow #**tensorflow环境
cd /Downloads #切换到whl文件所在文件夹
pip install --ignore-installed --upgrade tensorflow-1.0.0-py3-none-linux_x86_64.whl #切记,不要用sudo pip,也不要用pip3,然后--ignore-installed --upgrade等参数也不能省略,否则会出错。
- 1
- 2
- 3
3,安装tensorflow(gpu版)
创建环境的命令为:conda create -n tensorflow-gpu python=3.6
先下载安装包,下载路径为:https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.0.0-cp36-cp36m-linux_x86_64.whl
然后进入环境并安装tensorflow-gpu
source activate tensorflow-gpu**环境
source activate tensorflow-gpu #**tensorflow环境
cd /Downloads #切换到whl文件所在文件夹
pip install --ignore-installed --upgrade tensorflow_gpu-1.0.0-cp36-cp36m-linux_x86_64.whl #切记,不要用sudo pip,也不要用pip3,然后--ignore-installed --upgrade等参数也不能省略,否则会出错。
- 1
- 2
- 3
接着,还要配置cuda和cudnn,可以到nvidia官网下载,接下来的配置可参考http://blog.csdn.net/jteng/article/details/52975247
)d. 测试安装是否成功
首先** tensorflow 环境,然后进入 python,最后导入 tensorflow 库。如果导入成功则表明安装成功。
这里使用了官方文档中的示例
e. 需要使用 TensorFlow 的时候必须重新**
当使用完毕后,关闭 tensorflow 环境。 source deactivate
然后你的终端提示符就会变会原来的样子。
当你需要再次使用的时候就必须再次** tensorflow 环境。 source activate tensorflow
关闭 tensorflow 环境 并重新**
f. Finally
至此,你已经拥有了一个可以玩耍机器学习的 tensorflow 环境,好好玩耍吧:)
你可以参照官方文档快速的运行一个手写数字识别的示例。友情提示:仅CPU 版本你需要有足够的耐心。。。。。。
上一篇: 盐放多了如何补救?加水可不美味