Pytorch实现卷积神经网络CNN
程序员文章站
2022-07-06 17:56:24
...
本文使用Pytorch实现卷积神经网络CNN,仅为Pytorch新入坑者提供帮助,避免入门到放弃;
数据集为MNIST如文中代码所示;
最后,恭喜各位入坑,在调参的路上越走越远!
import torch
from torch.autograd import Variable
import torch.utils.data as Data
import torchvision # 数据库模块
import torch.nn as nn
import matplotlib.pyplot as plt
LR = 0.001 # 学习率
BATCH_SIZE = 50 # 表示每次选取50个样本作训练
EPOCH = 1 # epoch表示整个数据集重复训练次数
DOWNLOAD_MNIST = False # 是否下载MNIST
train_data = torchvision.datasets.MNIST(root='./mnist',
train=True, # 表示这是训练集
transform=torchvision.transforms.ToTensor(), # 原始数据是array数组,转换为tensor,同时进行归一化
download=DOWNLOAD_MNIST)
# 打印图片
print(train_data.data.size()) # 打印训练集的大小
print(train_data.targets.size()) # 打印训练集标签的大小
‘’使用imshow()函数加载训练集中的图片’‘’
plt.imshow(train_data.data[0].numpy(), cmap='gray')
plt.title('%i' % train_data.targets[0])
plt.show()
# 训练
train_loader = Data.DataLoader(dataset=train_data, batch_size=BATCH_SIZE,
shuffle=True, num_workers=2) # 批量化(包装)处理数据集
test_data = torchvision.datasets.MNIST(root='./mnist', train=False)
‘’‘#测试集shape from (2000, 28, 28) to (2000, 1, 28, 28), value in range(0,1)’‘’
test_x = torch.unsqueeze(test_data.data, dim=[:2000].type(torch.FloatTensor).cuda()/255.
‘’‘#这里使用cuda()表示使用调用GPU加速跑测试集/训练集’‘’
test_y = test_data.targets[:2000].cuda()
# 搭建CNN网络
if __name__ == '__main__':
class CNN(torch.nn.Module): # 定义一个神经网络层
def __init__(self): # 定义初始化
super(CNN, self).__init__() # 继承初始层
self.conv1 = torch.nn.Sequential(
nn.Conv2d(in_channels=1,
out_channels=16, # 卷积核个数
kernel_size=5, # 卷积核大小
stride=1, # 卷积核移动步长
padding=2, # 填充数目
), #-->卷积后的图片形状大小(28,28,16)
nn.ReLU(),
nn.MaxPool2d(kernel_size=2), #-->池化后的图片形状大小(14,14,16)
)
self.conv2 = nn.Sequential(
nn.Conv2d(16, 32, 5, 1, 2), #-->第二次卷积后的图片形状大小(14,14,32)
nn.ReLU(),
nn.MaxPool2d(kernel_size=2) #-->第二次池化后的图片形状大小(7,7,32)
)
self.out = nn.Linear(32*7*7, 10) # 全连接层
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
x = x.view(x.size(0), -1) # 数据展平为多维后的图片形状大小(batch size,7,7,32)
output = self.out(x)
return output
cnn = CNN()
print(cnn) # 打印CNN网络
cnn.cuda() # CNN模型使用GPU加速
optimizer = torch.optim.Adam(cnn.parameters(), lr=LR, betas=(0.9, 0.99)) # Adam优化器
loss_func = nn.CrossEntropyLoss() # 损失函数
# 训练模型
for epoch in range(EPOCH):
for step, (b_x, b_y) in enumerate(train_loader):
output = cnn(b_x.cuda()) # CNN预测输出
loss = loss_func(output, b_y.cuda())
optimizer.zero_grad()
loss.backward()
optimizer.step()
if step % 50 == 0:
test_output = cnn(test_x.cuda())
test_pred = torch.max(test_output, 1)[1].cuda().data
test_accuracy = float((test_pred == test_y).sum().item()) / float(test_y.size(0))
print('Epoch:', epoch, 'Train loss:', loss.data.cpu().numpy(), 'Test Accuracy:', test_accuracy)
# 观察前20个数据误差
test_output = cnn(test_x[:20])
pred_y = torch.max(test_output, 1)[1].cuda().data
print(pred_y.cpu().numpy(), 'prediction number')
print(test_y[:20].cpu().numpy(), 'real number')
前20张测试集图片标签预测结果如下所示:
Epoch: 0 Train loss: 2.3024046 Test Accuracy: 0.1915
Epoch: 0 Train loss: 0.7746874 Test Accuracy: 0.832
Epoch: 0 Train loss: 0.23315571 Test Accuracy: 0.884
Epoch: 0 Train loss: 0.2868251 Test Accuracy: 0.9175
Epoch: 0 Train loss: 0.3143016 Test Accuracy: 0.9255
Epoch: 0 Train loss: 0.11868002 Test Accuracy: 0.938
Epoch: 0 Train loss: 0.10169793 Test Accuracy: 0.941
Epoch: 0 Train loss: 0.2048641 Test Accuracy: 0.9525
Epoch: 0 Train loss: 0.12582631 Test Accuracy: 0.9675
Epoch: 0 Train loss: 0.03774266 Test Accuracy: 0.9625
Epoch: 0 Train loss: 0.051590152 Test Accuracy: 0.967
Epoch: 0 Train loss: 0.007484264 Test Accuracy: 0.9675
Epoch: 0 Train loss: 0.15514685 Test Accuracy: 0.9705
Epoch: 0 Train loss: 0.03676407 Test Accuracy: 0.97
Epoch: 0 Train loss: 0.035673436 Test Accuracy: 0.967
Epoch: 0 Train loss: 0.06010488 Test Accuracy: 0.9715
Epoch: 0 Train loss: 0.13796066 Test Accuracy: 0.9765
Epoch: 0 Train loss: 0.09808495 Test Accuracy: 0.974
Epoch: 0 Train loss: 0.016342957 Test Accuracy: 0.977
Epoch: 0 Train loss: 0.11043023 Test Accuracy: 0.9745
Epoch: 0 Train loss: 0.038324982 Test Accuracy: 0.9795
Epoch: 0 Train loss: 0.11415327 Test Accuracy: 0.9805
Epoch: 0 Train loss: 0.15161397 Test Accuracy: 0.981
Epoch: 0 Train loss: 0.11598789 Test Accuracy: 0.97
[7 2 1 0 4 1 4 9 5 9 0 6 9 0 1 5 9 7 3 4] prediction number
[7 2 1 0 4 1 4 9 5 9 0 6 9 0 1 5 9 7 3 4] real number
推荐阅读
-
PyTorch上搭建简单神经网络实现回归和分类的示例
-
利用PyTorch实现循环神经网络RNN
-
卷积神经网络(CNN)在无人驾驶中的应用
-
Python通过TensorFlow卷积神经网络实现猫狗识别
-
PyTorch上实现卷积神经网络CNN的方法
-
pytorch cnn 识别手写的字实现自建图片数据
-
Python神经网络TensorFlow基于CNN卷积识别手写数字
-
tensorflow2.0之keras实现卷积神经网络
-
TensorFlow 实战之实现卷积神经网络的实例讲解
-
深度之眼Pytorch打卡(十五):Pytorch卷积神经网络部件——转置卷积操作与转置卷积层(对转置卷积操作全网最细致分析,转置卷积的stride与padding,转置与反卷积名称论证)