欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

使用Scrapy抓取数据

程序员文章站 2022-07-06 17:01:03
...

       Scrapy是Python开发的一个快速,高层次的屏幕抓取和web抓取框架,用于抓取web站点并从页面中提取结构化的数据。Scrapy用途广泛,可以用于数据挖掘、监测和自动化测试。

Scrapy 使用了 Twisted 异步网络库来处理网络通讯。整体架构大致如下(注:图片来自互联网):

使用Scrapy抓取数据 
            
    
    博客分类: PythonScrapyScrapy结合Spynner PythonScrapySpynnerWebkit 

Scrapy主要包括了以下组件:

  • 引擎,用来处理整个系统的数据流处理,触发事务。
  • 调度器,用来接受引擎发过来的请求,压入队列中,并在引擎再次请求的时候返回。
  • 下载器,用于下载网页内容,并将网页内容返回给蜘蛛。
  • 蜘蛛,蜘蛛是主要干活的,用它来制订特定域名或网页的解析规则。
  • 项目管道,负责处理有蜘蛛从网页中抽取的项目,他的主要任务是清晰、验证和存储数据。当页面被蜘蛛解析后,将被发送到项目管道,并经过几个特定的次序处理数据。
  • 下载器中间件,位于Scrapy引擎和下载器之间的钩子框架,主要是处理Scrapy引擎与下载器之间的请求及响应。
  • 蜘蛛中间件,介于Scrapy引擎和蜘蛛之间的钩子框架,主要工作是处理蜘蛛的响应输入和请求输出。
  • 调度中间件,介于Scrapy引擎和调度之间的中间件,从Scrapy引擎发送到调度的请求和响应。

使用Scrapy可以很方便的完成网上数据的采集工作,它为我们完成了大量的工作,而不需要自己费大力气去开发。

1. 安装

安装 python

Scrapy 目前最新版本为0.22.2,该版本需要 python 2.7,故需要先安装 python 2.7。这里我使用 centos 服务器来做测试,因为系统自带了 python ,需要先检查 python 版本。

查看python版本:

$ python -V
Python 2.6.6

升级版本到2.7:

$ wget http://python.org/ftp/python/2.7.6/Python-2.7.6.tar.xz
$ tar xf Python-2.7.6.tar.xz
$ cd Python-2.7.6
$ ./configure --prefix=/usr/local --enable-unicode=ucs4 --enable-shared LDFLAGS="-Wl,-rpath /usr/local/lib"
$ make && make altinstall

建立软连接,使系统默认的 python指向 python2.7

$ mv /usr/bin/python /usr/bin/python2.6.6 
$ ln -s /usr/local/bin/python2.7 /usr/bin/python 

再次查看python版本:

$ python -V
Python 2.7.6

安装

这里使用 wget 的方式来安装 setuptools :

$ wget https://bootstrap.pypa.io/ez_setup.py -O - | python

安装 zope.interface

$ easy_install zope.interface

安装 twisted

Scrapy 使用了 Twisted 异步网络库来处理网络通讯,故需要安装 twisted。

安装 twisted 前,需要先安装 gcc:

$ yum install gcc -y

然后,再通过 easy_install 安装 twisted:

$ easy_install twisted

如果出现下面错误:

$ easy_install twisted
Searching for twisted
Reading https://pypi.python.org/simple/twisted/
Best match: Twisted 14.0.0
Downloading https://pypi.python.org/packages/source/T/Twisted/Twisted-14.0.0.tar.bz2#md5=9625c094e0a18da77faa4627b98c9815
Processing Twisted-14.0.0.tar.bz2
Writing /tmp/easy_install-kYHKjn/Twisted-14.0.0/setup.cfg
Running Twisted-14.0.0/setup.py -q bdist_egg --dist-dir /tmp/easy_install-kYHKjn/Twisted-14.0.0/egg-dist-tmp-vu1n6Y
twisted/runner/portmap.c:10:20: error: Python.h: No such file or directory
twisted/runner/portmap.c:14: error: expected ‘=’, ‘,’, ‘;’, ‘asm’ or ‘__attribute__’ before ‘*’ token
twisted/runner/portmap.c:31: error: expected ‘=’, ‘,’, ‘;’, ‘asm’ or ‘__attribute__’ before ‘*’ token
twisted/runner/portmap.c:45: error: expected ‘=’, ‘,’, ‘;’, ‘asm’ or ‘__attribute__’ before ‘PortmapMethods’
twisted/runner/portmap.c: In function ‘initportmap’:
twisted/runner/portmap.c:55: warning: implicit declaration of function ‘Py_InitModule’
twisted/runner/portmap.c:55: error: ‘PortmapMethods’ undeclared (first use in this function)
twisted/runner/portmap.c:55: error: (Each undeclared identifier is reported only once
twisted/runner/portmap.c:55: error: for each function it appears in.)

请安装 python-devel 然后再次运行:

$ yum install python-devel -y
$ easy_install twisted

如果出现下面异常:

error: Not a recognized archive type: /tmp/easy_install-tVwC5O/Twisted-14.0.0.tar.bz2

请手动下载然后安装,下载地址在这里

$ wget https://pypi.python.org/packages/source/T/Twisted/Twisted-14.0.0.tar.bz2#md5=9625c094e0a18da77faa4627b98c9815
$ tar -vxjf Twisted-14.0.0.tar.bz2
$ cd Twisted-14.0.0
$ python setup.py install

安装 pyOpenSSL

先安装一些依赖:

$ yum install libffi libffi-devel openssl-devel -y

然后,再通过 easy_install 安装 pyOpenSSL:

$ easy_install pyOpenSSL

安装 Scrapy

先安装一些依赖:

$ yum install libxml2 libxslt libxslt-devel -y

最后再来安装 Scrapy :

$ easy_install scrapy

2. 使用 Scrapy

在安装成功之后,你可以了解一些 Scrapy 的基本概念和使用方法,并学习 Scrapy 项目的例子 dirbot 。

Dirbot 项目位于 https://github.com/scrapy/dirbot,该项目包含一个 README 文件,它详细描述了项目的内容。如果你熟悉 git,你可以 checkout 它的源代码。或者你可以通过点击 Downloads 下载 tarball 或 zip 格式的文件。

下面以该例子来描述如何使用 Scrapy 创建一个爬虫项目。

新建工程

在抓取之前,你需要新建一个 Scrapy 工程。进入一个你想用来保存代码的目录,然后执行:

$ scrapy startproject tutorial

这个命令会在当前目录下创建一个新目录 tutorial,它的结构如下:

.
├── scrapy.cfg
└── tutorial
    ├── __init__.py
    ├── items.py
    ├── pipelines.py
    ├── settings.py
    └── spiders
        └── __init__.py

这些文件主要是:

  • scrapy.cfg: 项目配置文件
  • tutorial/: 项目python模块, 呆会代码将从这里导入
  • tutorial/items.py: 项目items文件
  • tutorial/pipelines.py: 项目管道文件
  • tutorial/settings.py: 项目配置文件
  • tutorial/spiders: 放置spider的目录

定义Item

Items是将要装载抓取的数据的容器,它工作方式像 python 里面的字典,但它提供更多的保护,比如对未定义的字段填充以防止拼写错误。

它通过创建一个 scrapy.item.Item 类来声明,定义它的属性为 scrpy.item.Field 对象,就像是一个对象关系映射(ORM).
我们通过将需要的item模型化,来控制从 dmoz.org 获得的站点数据,比如我们要获得站点的名字,url 和网站描述,我们定义这三种属性的域。要做到这点,我们编辑在 tutorial 目录下的 items.py 文件,我们的 Item 类将会是这样

from scrapy.item import Item, Field 
class DmozItem(Item):
    title = Field()
    link = Field()
    desc = Field()

刚开始看起来可能会有些困惑,但是定义这些 item 能让你用其他 Scrapy 组件的时候知道你的 items 到底是什么。

编写爬虫(Spider)

Spider 是用户编写的类,用于从一个域(或域组)中抓取信息。们定义了用于下载的URL的初步列表,如何跟踪链接,以及如何来解析这些网页的内容用于提取items。

要建立一个 Spider,你可以为 scrapy.spider.BaseSpider 创建一个子类,并确定三个主要的、强制的属性:

  • name:爬虫的识别名,它必须是唯一的,在不同的爬虫中你必须定义不同的名字.
  • start_urls:爬虫开始爬的一个 URL 列表。爬虫从这里开始抓取数据,所以,第一次下载的数据将会从这些 URLS 开始。其他子 URL 将会从这些起始 URL 中继承性生成。
  • parse():爬虫的方法,调用时候传入从每一个 URL 传回的 Response 对象作为参数,response 将会是 parse 方法的唯一的一个参数,

这个方法负责解析返回的数据、匹配抓取的数据(解析为 item )并跟踪更多的 URL。

在 tutorial/spiders 目录下创建 DmozSpider.py

from scrapy.spider import BaseSpider

class DmozSpider(BaseSpider):
    name = "dmoz"
    allowed_domains = ["dmoz.org"]
    start_urls = [
        "http://www.dmoz.org/Computers/Programming/Languages/Python/Books/",
        "http://www.dmoz.org/Computers/Programming/Languages/Python/Resources/"
    ]

    def parse(self, response):
        filename = response.url.split("/")[-2]
        open(filename, 'wb').write(response.body)

运行项目

$ scrapy crawl dmoz

该命令从 dmoz.org 域启动爬虫,第三个参数为 DmozSpider.py 中的 name 属性值。

xpath选择器

Scrapy 使用一种叫做 XPath selectors 的机制,它基于 XPath 表达式。如果你想了解更多selectors和其他机制你可以查阅资料

这是一些XPath表达式的例子和他们的含义:

  • /html/head/title: 选择HTML文档 <head> 元素下面的 <title> 标签。
  • /html/head/title/text(): 选择前面提到的 <title> 元素下面的文本内容
  • //td: 选择所有 <td> 元素
  • //div[@class="mine"]: 选择所有包含 class="mine" 属性的div 标签元素

这只是几个使用 XPath 的简单例子,但是实际上 XPath 非常强大。如果你想了解更多 XPATH 的内容,我们向你推荐这个 XPath 教程

为了方便使用 XPaths,Scrapy 提供 Selector 类, 有三种方法

  • xpath():返回selectors列表, 每一个select表示一个xpath参数表达式选择的节点.
  • extract():返回一个unicode字符串,该字符串为XPath选择器返回的数据
  • re(): 返回unicode字符串列表,字符串作为参数由正则表达式提取出来
  • css()

提取数据

我们可以通过如下命令选择每个在网站中的 <li> 元素:

sel.xpath('//ul/li') 

然后是网站描述:

sel.xpath('//ul/li/text()').extract()

网站标题:

sel.xpath('//ul/li/a/text()').extract()

网站链接:

sel.xpath('//ul/li/a/@href').extract()

如前所述,每个 xpath() 调用返回一个 selectors 列表,所以我们可以结合 xpath() 去挖掘更深的节点。我们将会用到这些特性,所以:

sites = sel.xpath('//ul/li')
for site in sites:
    title = site.xpath('a/text()').extract()
    link = site.xpath('a/@href').extract()
    desc = site.xpath('text()').extract()
    print title, link, desc

使用Item

scrapy.item.Item 的调用接口类似于 python 的 dict ,Item 包含多个 scrapy.item.Field。这跟 django 的 Model 与

Item 通常是在 Spider 的 parse 方法里使用,它用来保存解析到的数据。

最后修改爬虫类,使用 Item 来保存数据,代码如下:

from scrapy.spider import Spider
from scrapy.selector import Selector

from dirbot.items import Website


class DmozSpider(Spider):
    name = "dmoz"
    allowed_domains = ["dmoz.org"]
    start_urls = [
        "http://www.dmoz.org/Computers/Programming/Languages/Python/Books/",
        "http://www.dmoz.org/Computers/Programming/Languages/Python/Resources/",
    ]

    def parse(self, response):
        """
        The lines below is a spider contract. For more info see:
        http://doc.scrapy.org/en/latest/topics/contracts.html

        @url http://www.dmoz.org/Computers/Programming/Languages/Python/Resources/
        @scrapes name
        """
        sel = Selector(response)
        sites = sel.xpath('//ul[@class="directory-url"]/li')
        items = []

        for site in sites:
            item = Website()
            item['name'] = site.xpath('a/text()').extract()
            item['url'] = site.xpath('a/@href').extract()
            item['description'] = site.xpath('text()').re('-\s([^\n]*?)\\n')
            items.append(item)

        return items

现在,可以再次运行该项目查看运行结果:

$ scrapy crawl dmoz

使用Item Pipeline

在 settings.py 中设置 ITEM_PIPELINES,其默认为[],与 django 的 MIDDLEWARE_CLASSES 等相似。
从 Spider 的 parse 返回的 Item 数据将依次被 ITEM_PIPELINES 列表中的 Pipeline 类处理。

一个 Item Pipeline 类必须实现以下方法:

  • process_item(item, spider) 为每个 item pipeline 组件调用,并且需要返回一个 scrapy.item.Item 实例对象或者抛出一个 scrapy.exceptions.DropItem 异常。当抛出异常后该 item 将不会被之后的 pipeline 处理。参数:
    • item (Item object) – 由 parse 方法返回的 Item 对象
    • spider (BaseSpider object) – 抓取到这个 Item 对象对应的爬虫对象

也可额外的实现以下两个方法:

  • open_spider(spider) 当爬虫打开之后被调用。参数: spider (BaseSpider object) – 已经运行的爬虫
  • close_spider(spider) 当爬虫关闭之后被调用。参数: spider (BaseSpider object) – 已经关闭的爬虫

保存抓取的数据

保存信息的最简单的方法是通过 Feed exports,命令如下:

$ scrapy crawl dmoz -o items.json -t json

除了 json 格式之外,还支持 JSON lines、CSV、XML格式,你也可以通过接口扩展一些格式。

对于小项目用这种方法也足够了。如果是比较复杂的数据的话可能就需要编写一个 Item Pipeline 进行处理了。

所有抓取的 items 将以 JSON 格式被保存在新生成的 items.json 文件中

总结

上面描述了如何创建一个爬虫项目的过程,你可以参照上面过程联系一遍。作为学习的例子,你还可以参考这篇文章:scrapy 中文教程(爬cnbeta实例)

这篇文章中的爬虫类代码如下:

from scrapy.contrib.spiders import CrawlSpider, Rule
from scrapy.contrib.linkextractors.sgml import SgmlLinkExtractor
from scrapy.selector import Selector
 
from cnbeta.items import CnbetaItem
 
class CBSpider(CrawlSpider):
    name = 'cnbeta'
    allowed_domains = ['cnbeta.com']
    start_urls = ['http://www.cnbeta.com']
 
    rules = (
        Rule(SgmlLinkExtractor(allow=('/articles/.*\.htm', )),
             callback='parse_page', follow=True),
    )
 
    def parse_page(self, response):
        item = CnbetaItem()
        sel = Selector(response)
        item['title'] = sel.xpath('//title/text()').extract()
        item['url'] = response.url
        return item

需要说明的是:

  • 该爬虫类继承的是 CrawlSpider 类,并且定义规则,rules指定了含有 /articles/.*\.htm 的链接都会被匹配。
  • 该类并没有实现parse方法,并且规则中定义了回调函数 parse_page,你可以参考更多资料了解 CrawlSpider 的用法

3. 学习资料

接触 Scrapy,是因为想爬取一些知乎的数据,最开始的时候搜索了一些相关的资料和别人的实现方式。

Github 上已经有人或多或少的实现了对知乎数据的爬取,我搜索到的有以下几个仓库:

其他资料:

scrapy 和 javascript 交互例子:

还有一些待整理的知识点:

  • 如何先登陆再爬数据
  • 如何使用规则做过滤
  • 如何递归爬取数据
  • scrapy的参数设置和优化
  • 如何实现分布式爬取

4. 总结

以上就是最近几天学习 Scrapy 的一个笔记和知识整理,参考了一些网上的文章才写成此文,对此表示感谢,也希望这篇文章能够对你有所帮助。如果你有什么想法,欢迎留言;如果喜欢此文,请帮忙分享,谢谢!

 

原文转载:http://blog.javachen.com/2014/05/24/using-scrapy-to-cralw-data.html