欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

pytorch学习-莫烦

程序员文章站 2022-07-06 10:17:53
...

https://www.bilibili.com/video/av15997678/?p=14

https://morvanzhou.github.io/tutorials/machine-learning/torch/3-04-save-reload/

要点 

训练好了一个模型, 我们当然想要保存它, 留到下次要用的时候直接提取直接用, 这就是这节的内容啦. 我们用回归的神经网络举例实现保存提取.

保存 

我们快速地建造数据, 搭建网络:

torch.manual_seed(1)    # reproducible

# 假数据
x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1)  # x data (tensor), shape=(100, 1)
y = x.pow(2) + 0.2*torch.rand(x.size())  # noisy y data (tensor), shape=(100, 1)

def save():
    # 建网络
    net1 = torch.nn.Sequential(
        torch.nn.Linear(1, 10),
        torch.nn.ReLU(),
        torch.nn.Linear(10, 1)
    )
    optimizer = torch.optim.SGD(net1.parameters(), lr=0.5)
    loss_func = torch.nn.MSELoss()

    # 训练
    for t in range(100):
        prediction = net1(x)
        loss = loss_func(prediction, y)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

接下来我们有两种途径来保存

torch.save(net1, 'net.pkl')  # 保存整个网络
torch.save(net1.state_dict(), 'net_params.pkl')   # 只保存网络中的参数 (速度快, 占内存少)

提取网络 

这种方式将会提取整个神经网络, 网络大的时候可能会比较慢.

def restore_net():
    # restore entire net1 to net2
    net2 = torch.load('net.pkl')
    prediction = net2(x)

只提取网络参数 

这种方式将会提取所有的参数, 然后再放到你的新建网络中.

def restore_params():
    # 新建 net3
    net3 = torch.nn.Sequential(
        torch.nn.Linear(1, 10),
        torch.nn.ReLU(),
        torch.nn.Linear(10, 1)
    )

    # 将保存的参数复制到 net3
    net3.load_state_dict(torch.load('net_params.pkl'))
    prediction = net3(x)

显示结果 

调用上面建立的几个功能, 然后出图.

# 保存 net1 (1. 整个网络, 2. 只有参数)
save()

# 提取整个网络
restore_net()

# 提取网络参数, 复制到新网络
restore_params()

pytorch学习-莫烦

这样我们就能看出三个网络完全一模一样啦.

所以这也就是在我 github 代码 中的每一步的意义啦.