go-torch性能分析工具使用
go-torch is deprecated, use pprof instead
As of Go 1.11, flamegraph visualizations are available in go tool pprof
directly!
# This will listen on :8081 and open a browser.
# Change :8081 to a port of your choice.
$ go tool pprof -http=":8081" [binary] [profile]
If you cannot use Go 1.11, you can get the latest pprof
tool and use it instead:
# Get the pprof tool directly
$ go get -u github.com/google/pprof
$ pprof -http=":8081" [binary] [profile]
Synopsis
Tool for stochastically profiling Go programs. Collects stack traces and synthesizes them into a flame graph. Uses Go's built in pprof library.
Example Flame Graph
Basic Usage
$ go-torch -h
Usage:
go-torch [options] [binary] <profile source>
pprof Options:
-u, --url= Base URL of your Go program (default: http://localhost:8080)
-s, --suffix= URL path of pprof profile (default: /debug/pprof/profile)
-b, --binaryinput= File path of previously saved binary profile. (binary profile is anything accepted by https://golang.org/cmd/pprof)
--binaryname= File path of the binary that the binaryinput is for, used for pprof inputs
-t, --seconds= Number of seconds to profile for (default: 30)
--pprofArgs= Extra arguments for pprof
Output Options:
-f, --file= Output file name (must be .svg) (default: torch.svg)
-p, --print Print the generated svg to stdout instead of writing to file
-r, --raw Print the raw call graph output to stdout instead of creating a flame graph; use with Brendan Gregg's flame graph perl script (see https://github.com/brendangregg/FlameGraph)
--title= Graph title to display in the output file (default: Flame Graph)
--width= Generated graph width (default: 1200)
--hash Colors are keyed by function name hash
--colors= Set color palette. Valid choices are: hot (default), mem, io, wakeup, chain, java,
js, perl, red, green, blue, aqua, yellow, purple, orange
--hash Graph colors are keyed by function name hash
--cp Graph use consistent palette (palette.map)
--inverted Icicle graph
Help Options:
-h, --help Show this help message
Write flamegraph using /debug/pprof endpoint
The default options will hit http://localhost:8080/debug/pprof/profile
for a 30 second CPU profile, and write it out to torch.svg
$ go-torch
INFO[19:10:58] Run pprof command: go tool pprof -raw -seconds 30 http://localhost:8080/debug/pprof/profile
INFO[19:11:03] Writing svg to torch.svg
You can customize the base URL by using -u
$ go-torch -u http://my-service:8080/
INFO[19:10:58] Run pprof command: go tool pprof -raw -seconds 30 http://my-service:8080/debug/pprof/profile
INFO[19:11:03] Writing svg to torch.svg
Or change the number of seconds to profile using --seconds
:
$ go-torch --seconds 5
INFO[19:10:58] Run pprof command: go tool pprof -raw -seconds 5 http://localhost:8080/debug/pprof/profile
INFO[19:11:03] Writing svg to torch.svg
Using pprof arguments
go-torch
will pass through arguments to go tool pprof
, which lets you take existing pprof commands and easily make them work with go-torch
.
For example, after creating a CPU profile from a benchmark:
$ go test -bench . -cpuprofile=cpu.prof
# This creates a cpu.prof file, and the $PKG.test binary.
The same arguments that can be used with go tool pprof
will also work with go-torch
:
$ go tool pprof main.test cpu.prof
# Same arguments work with go-torch
$ go-torch main.test cpu.prof
INFO[19:00:29] Run pprof command: go tool pprof -raw -seconds 30 main.test cpu.prof
INFO[19:00:29] Writing svg to torch.svg
Flags that are not handled by go-torch
are passed through as well:
$ go-torch --alloc_objects main.test mem.prof
INFO[19:00:29] Run pprof command: go tool pprof -raw -seconds 30 --alloc_objects main.test mem.prof
INFO[19:00:29] Writing svg to torch.svg
Integrating With Your Application
To add profiling endpoints in your application, follow the official Go docs here. If your application is already running a server on the DefaultServeMux, just add this import to your application.
import _ "net/http/pprof"
If your application is not using the DefaultServeMux, you can still easily expose pprof endpoints by manually registering the net/http/pprof handlers or by using a library like this one.
Installation
$ go get github.com/uber/go-torch
You can also use go-torch using docker:
$ docker run uber/go-torch -u http://[address-of-host] -p > torch.svg
Using -p
will print the SVG to standard out, which can then be redirected to a file. This avoids mounting volumes to a container.
Get the flame graph script:
When using the go-torch
binary locally, you will need the Flamegraph scripts in your PATH
:
$ cd $GOPATH/src/github.com/uber/go-torch
$ git clone https://github.com/brendangregg/FlameGraph.git
Development and Testing
Install the Go dependencies:
$ go get github.com/Masterminds/glide
$ cd $GOPATH/src/github.com/uber/go-torch
$ glide install
Run the Tests
$ go test ./...
ok github.com/uber/go-torch 0.012s
ok github.com/uber/go-torch/graph 0.017s
ok github.com/uber/go-torch/visualization 0.052s
上一篇: elasticsearch Java API 客户端(Node Client)
下一篇: 解码方法