Spark DataFrame处理数据倾斜问题
程序员文章站
2022-07-04 13:35:46
...
由于爬虫抓取等原因,会导致单一ID的日志条数过多。在spark中,同一ID的日志会被shuffle到单一的节点上进行处理,导致系统运行缓慢!
因为这些用户的访问本来就是无效的,所以可以直接过滤掉这部分用户。
话不多说,scala的DataFrame版输出和代码如下(参考链接见代码注释):
因为这些用户的访问本来就是无效的,所以可以直接过滤掉这部分用户。
话不多说,scala的DataFrame版输出和代码如下(参考链接见代码注释):
引用
spark version: 1.6.1
Original DataFrame (with fake users):
+---------+------+
| id| movie|
+---------+------+
| u1|WhoAmI|
| u2|Zoppia|
| u2| Lost|
|FakeUserA|Zoppia|
|FakeUserA| Lost|
|FakeUserA|Zoppia|
|FakeUserA| Lost|
|FakeUserA|Zoppia|
|FakeUserA| Lost|
|FakeUserB| Lost|
|FakeUserB| Lost|
|FakeUserB| Lost|
|FakeUserB| Lost|
+---------+------+
Fake Users with count (threshold=2):
+---------+-----+
| id|count|
+---------+-----+
|FakeUserA| 6|
|FakeUserB| 4|
+---------+-----+
Fake Users:
Set(FakeUserA, FakeUserB)
Valid users after filter:
+---+------+
| id| movie|
+---+------+
| u1|WhoAmI|
| u2|Zoppia|
| u2| Lost|
+---+------+
Original DataFrame (with fake users):
+---------+------+
| id| movie|
+---------+------+
| u1|WhoAmI|
| u2|Zoppia|
| u2| Lost|
|FakeUserA|Zoppia|
|FakeUserA| Lost|
|FakeUserA|Zoppia|
|FakeUserA| Lost|
|FakeUserA|Zoppia|
|FakeUserA| Lost|
|FakeUserB| Lost|
|FakeUserB| Lost|
|FakeUserB| Lost|
|FakeUserB| Lost|
+---------+------+
Fake Users with count (threshold=2):
+---------+-----+
| id|count|
+---------+-----+
|FakeUserA| 6|
|FakeUserB| 4|
+---------+-----+
Fake Users:
Set(FakeUserA, FakeUserB)
Valid users after filter:
+---+------+
| id| movie|
+---+------+
| u1|WhoAmI|
| u2|Zoppia|
| u2| Lost|
+---+------+
import org.apache.log4j.{Level, Logger} import org.apache.spark.{SparkConf, SparkContext} import org.apache.spark.sql.SQLContext import org.apache.spark.sql.functions._ /** * Created by colinliang on 2017/8/14. */ case class IDMovie(id: String, movie: String) object BroadcastTest { def main(args: Array[String]): Unit = { Logger.getRootLogger().setLevel(Level.FATAL) //http://*.com/questions/27781187/how-to-stop-messages-displaying-on-spark-console val conf = new SparkConf().setAppName("word count").setMaster("local[1]") val sc = new SparkContext(conf) println("spark version: " + sc.version) sc.setLogLevel("WARN") //http://*.com/questions/27781187/how-to-stop-messages-displaying-on-spark-console val spark = new SQLContext(sc) val idvids = List( IDMovie("u1", "WhoAmI") , IDMovie("u2", "Zoppia") , IDMovie("u2", "Lost") , IDMovie("FakeUserA", "Zoppia") , IDMovie("FakeUserA", "Lost") , IDMovie("FakeUserA", "Zoppia") , IDMovie("FakeUserA", "Lost") , IDMovie("FakeUserA", "Zoppia") , IDMovie("FakeUserA", "Lost") , IDMovie("FakeUserB", "Lost") , IDMovie("FakeUserB", "Lost") , IDMovie("FakeUserB", "Lost") , IDMovie("FakeUserB", "Lost") ); val df = spark .createDataFrame(idvids) .repartition(col("id")) println("Original DataFrame (with fake users): ") df.show() // val df_fakeUsers_with_count=df.sample(false,0.1).groupBy(col("id")).count().filter(col("count")>2).limit(10000)//实际中可以根据需要仅采样一部分数据 val df_fakeUsers_with_count=df.groupBy(col("id")).count().filter(col("count")>2) /**DataFrame 中的groupby 为aggregation形式的,不涉及shuffle,速度很快。参见:https://forums.databricks.com/questions/956/how-do-i-group-my-dataset-by-a-key-or-combination.html 更多聚合函数参见:https://spark.apache.org/docs/1.6.1/api/scala/index.html#org.apache.spark.sql.functions$ 此外,还可以通过agg()函数对groupBy后的数据的多列进行聚合 */ println("Fake Users with count (threshold=2):") df_fakeUsers_with_count.show() val set_fakeUsers=df_fakeUsers_with_count.select("id").collect().map(_(0)).toList.map(_.toString).toArray[String].toSet println("Fake Users:") println(set_fakeUsers) val set_fakeUsers_broadcast=sc.broadcast(set_fakeUsers) /** broadcast教程:https://jaceklaskowski.gitbooks.io/mastering-apache-spark/spark-broadcast.html * 官方文档: http://spark.apache.org/docs/latest/rdd-programming-guide.html#broadcast-variables */ val udf_isValidUser = udf((id: String) => !set_fakeUsers_broadcast.value.contains(id)) //直接用set_highCountUsers.contains(id) 也行,但效率低,因为反序列化的次数可能比较多,参见http://spark.apache.org/docs/latest/rdd-programming-guide.html#broadcast-variables val df_filtered=df.filter(udf_isValidUser(col("id")) ) //过滤掉这部分用户 /** 如果是要保留部分用户,而不是过滤掉这部分用户,且用户量很小,无需定义UDF: * https://*.com/questions/39234360/filter-spark-scala-dataframe-if-column-is-present-in-set * val validValues = Set("A", "B", "C") * data.filter($"myColumn".isin(validValues.toSeq: _*)) */ /** 如果是要保留部分用户,且用户量比较大,可以用broadcast 的DataFrame: * https://*.com/questions/33824933/spark-dataframe-filtering-retain-element-belonging-to-a-list * import org.apache.spark.sql.functions.broadcast * initialDataFrame.join(broadcast(usersToKeep), $"userID" === $"userID_") */ println("\nValid users after filter:") df_filtered.show() } }
推荐阅读