欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

HDU - 4990 Reading comprehension(矩阵快速幂)

程序员文章站 2022-07-03 21:03:25
...

VJ原题

题目:

Read the program below carefully then answer the question. 
#pragma comment(linker, "/STACK:1024000000,1024000000") 
#include <cstdio> 
#include<iostream> 
#include <cstring> 
#include <cmath> 
#include <algorithm> 
#include<vector> 

const int MAX=100000*2; 
const int INF=1e9; 

int main() 

  int n,m,ans,i; 
  while(scanf("%d%d",&n,&m)!=EOF) 
  { 
    ans=0; 
    for(i=1;i<=n;i++) 
    { 
      if(i&1)ans=(ans*2+1)%m; 
      else ans=ans*2%m; 
    } 
    printf("%d\n",ans); 
  } 
  return 0; 
}

Input

Multi test cases,each line will contain two integers n and m. Process to end of file. 
[Technical Specification] 
1<=n, m <= 1000000000

Output

For each case,output an integer,represents the output of above program.

Sample Input

1 10
3 100

Sample Output

1
5

解决过程:

先用题目中给的程序跑出来前几项1,2,5,10,21,42,85,170。然后接下来就是玄学找规律了,找不找的到就看缘分了。是在不行就用无敌找规律网站直接爆出来。经过不懈努力,发现规律就是F(n)=F(n-1)+2*F(n-2)+1。知道递推式了就很明显的矩阵快速幂了。

HDU - 4990 Reading comprehension(矩阵快速幂)

直接矩阵快速幂板子干上,结束。

#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <queue>
#include <set>
#include <map>
#include <stack>
#include <string>
#include <list>
#include <cstdlib>
#include <memory>
#include <cstring>
#include <sstream>
#include <vector>
using namespace std;

#define INF 0x3f3f3f3f
#define PI 3.141592653579
#define FRER() freopen("input.txt" , "r" , stdin);
#define FREW()  freopen("output.txt" , "w" , stdout);
#define  QIO std::ios::sync_with_stdio(false)
const double eps = 1e-8;
typedef long long ll;

const int maxn = 3+10;

ll mod;
struct matrix
{
    ll x[3][3];
    void init()
    { memset(x , 0 , sizeof(x)); }
};
matrix mul(matrix a, matrix b)
{
    matrix c;
    c.init();
    for( int i = 0; i < 3; i++)
        for(int j = 0; j < 3; j++)
        {
            for(int k = 0; k < 3; k++)
                c.x[i][j] += a.x[i][k] * b.x[k][j];
            c.x[i][j] %= mod;
        }
    return c;
}
matrix powe(matrix x, ll n)
{
    matrix r;
    r.init();
    r.x[1][1] = r.x[0][0] = r.x[2][2] = 1;
    while(n)
    {
        if(n & 1)
            r = mul(r , x);
        x = mul(x , x);
        n >>= 1;
    }
    return r;
}


int main()
{
//    FRER();
//    FREW();
    QIO;
    int n ;
    while(cin >> n >> mod)
    {
        matrix a , b;
        a.init();
        b.init();
        a.x[0][0] = 1; a.x[0][1] = 2;
        a.x[0][2] = 1; a.x[1][0] = 1;
        a.x[2][2] = 1; b.x[0][0] = 2;
        b.x[1][0] = 1; b.x[2][0] = 1;
        if(n == 1)
        {printf("%lld\n" , 1%mod);continue;}
        if(n == 2)
        {printf("%lld\n" , 2 % mod); continue;}
        matrix res;
        res = powe(a, n-2);
        res = mul(res , b);
        printf("%lld\n" , res.x[0][0]);
    }
}