欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

入门

程序员文章站 2022-07-03 16:22:30
...
集群和节点:


节点(node) 是一个运行着的Elasticsearch 实例, 集群(cluster)是一组具有相同cluster.name 的节点集合可以组成一个集群。


你最好找一个合适的名字带替换cluster.name的默认值,这样可以防止一个新启动的节点加入到相同的网络中


cluster.name: es_cluster
node.name: node01
path.data: /elk/elasticsearch/data
path.logs: /elk/elasticsearch/logs
network.host: 192.168.32.80
network.port: 9200
discovery.zen.ping.unicast.hosts: ["192.168.32.80", "192.168.32.81"]


http://192.168.32.81:9200/_count?pretty/

                             GET

{
"query": {
"match_all": {}
}
}

返回:

{

    "count": 500,
    "_shards": {
        "total": 21,
        "successful": 21,
        "failed": 0
    }

}


面向文档:

Relational DB -> Databases -> Tables -> Rows -> Columns

Elasticsearch -> Indices -> Types -> Documents -> Fields

                 索引->类型->文档->字段

Elasticsearch集群可以包含多个索引,每个索引可以包含多个类型的(type),

每个类型包含多个文档,然后每个文档包含多个字段

所以为了创建员工目录,我们将进行如下操作:

1.为每个员工的文档(document)建立索引,每个文档包含了相应员工的所有信息。

2.每个文档的类型为 employee  。

3.employee  类型归属于索引 megacorp  。

4.megacorp  索引存储在Elasticsearch集群中。



http://192.168.32.81:9200/megacorp/employee/1/
                                         PUT

{
"first_name" : "John",
"last_name" : "Smith",
"age" : 25,
"about" : "I love to go rock climbing",
"interests": [ "sports", "music" ]
}

我们看到path: /megacorp/employee/1  包含三部分信息:
名字 说明

megacorp 索引名

employee 类型名

1        这个员工的ID



让我们在目录中加入更多额员工信息:

PUT /megacorp/employee/2
{
"first_name" : "Jane",
"last_name" : "Smith",
"age" : 32,
"about" : "I like to collect rock albums",
"interests": [ "music" ]
}

PUT /megacorp/employee/3
{
"first_name" : "Douglas",
"last_name" : "Fir",
"age" : 35,
"about": "I like to build cabinets",
"interests": [ "forestry" ]
}



Elasticsearch集群可以包含多个索引



检索文档:

http://192.168.32.80:9200/megacorp/employee/1/
                                         GET
{

    "_index": "megacorp",
    "_type": "employee",
    "_id": "1",
    "_version": 1,
    "found": true,
    "_source": {
        "first_name": "John",
        "last_name": "Smith",
        "age": 25,
        "about": "I love to go rock climbing",
        "interests": [
            "sports"
            ,
            "music"
        ]
    }

}

 我们通过HTTP 方法get来检索文档,同样的,我们可以使用DELETE 方法删除文档,

使用HEAD 方法检索某文档是否存在。如果想要更新已存在的文档,我们只需要PUT一次。



简单搜索:

GET 请求非常简单---你能轻松获取你想要的文档,让我们来进一步尝试一些东西,比如简单的搜索!

我们尝试一个最简单的搜索全部员工的请求:

http://192.168.32.80:9200/megacorp/employee/_search/


你可以看到我们依然使用megacorp 索引和employee 索引,但是我们在结尾使用关键字_search 来

取代原来的文档ID.响应内部的hits 数组包含了我们所有的三个文档,默认情况下搜索返回前10个结果


接下来,让我们搜索姓氏包含"Smith"的员工,要做到这一点,我们将在命令行中使用轻量级的搜索方法。

这种方法被称作查询字符串(query string)搜索,因为我们像传递URL参数一样去传递查询语句



curl localhost:9200/films/md/_search?q=tag:good 

demo:/root# curl http://192.168.32.81:9200/megacorp/employee/_search?q=last_name:lee
{"took":6,"timed_out":false,"_shards":{"total":5,"successful":5,"failed":0},"hits":

{"total":1,"max_score":0.30685282,"hits":

[{"_index":"megacorp","_type":"employee","_id":"3","_score":0.30685282,"_source":

{"first_name":"Jane","last_name":"lee","age":32,"about":"I like to collect rock albums","interests":["music"]}}]}}

demo:/root# 


http://192.168.32.81:9200/megacorp/employee/_search/
                                         
?q=last_name:lee                          GET

{

    "took": 7,
    "timed_out": false,
    "_shards": {
        "total": 5,
        "successful": 5,
        "failed": 0
    },
    "hits": {
        "total": 1,
        "max_score": 0.30685282,
        "hits": [
            {
                "_index": "megacorp",
                "_type": "employee",
                "_id": "3",
                "_score": 0.30685282,
                "_source": {
                    "first_name": "Jane",
                    "last_name": "lee",
                    "age": 32,
                    "about": "I like to collect rock albums",
                    "interests": [
                        "music"
                    ]
                }
            }
        ]
    }




使用DSL语句查询:


DSL 以JSON 请求体的形式出现,我们可以这样表示之前关于“Smith”的查询:


必须POST 请求:

http://192.168.32.81:9200/megacorp/employee/_search/
            
                                           POST

{
"query" : {
"match" : {
"last_name" : "Smith"
}
}
}


更复杂的搜索:

  我们让搜索稍微改变的复杂一些,我们依旧像要找到姓氏为"Smith"的员工,但是我们只想得到

年龄大于30岁的员工。 我们的语句将添加过滤器(filter),它是得我们高效率的执行一个结果话的检索:


http://192.168.32.81:9200/megacorp/employee/_search/
     
                                             POST


{
"query" : {
"filtered" : {
"filter" : {
"range" : {
"age" : { "gt" : 30 } 
}
},
"query" : {
"match" : {
"last_name" : "smith" 
}
}
}
}
}


返回:

{

    "took": 29,
    "timed_out": false,
    "_shards": {
        "total": 5,
        "successful": 5,
        "failed": 0
    },
    "hits": {
        "total": 1,
        "max_score": 0.30685282,
        "hits": [
            {
                "_index": "megacorp",
                "_type": "employee",
                "_id": "2",
                "_score": 0.30685282,
                "_source": {
                    "first_name": "Jane",
                    "last_name": "Smith",
                    "age": 32,
                    "about": "I like to collect rock albums",
                    "interests": [
                        "music"
                    ]
                }
            }
        ]
    }

}

<1> 这部分查询属于区间过滤器(range filter),它用于查找所有年龄大于30岁的数据


<2> 这部分查询与之前的 match  语句(query)一致。



全文搜索:


到目前为止搜索都很简单:搜索特定的名字,通过年龄筛选。让我们尝试一种更高级的搜索,

全文搜索---一种传统数据库很难实现的功能。




http://192.168.32.80:9200/megacorp/employee/_search/

                                             POST
{
"query" : {
"match" : {
"about" : "rock climbing"
}
}
}


返回:

{

    "took": 6,
    "timed_out": false,
    "_shards": {
        "total": 5,
        "successful": 5,
        "failed": 0
    },
    "hits": {
        "total": 3,
        "max_score": 0.16273327,
        "hits": [
            {
                "_index": "megacorp",
                "_type": "employee",
                "_id": "1",
                "_score": 0.16273327,
                "_source": {
                    "first_name": "John",
                    "last_name": "Smith",
                    "age": 25,
                    "about": "I love to go rock climbing",
                    "interests": [
                        "sports"
                        ,
                        "music"
                    ]
                }
            }
            ,
            {
                "_index": "megacorp",
                "_type": "employee",
                "_id": "2",
                "_score": 0.016878016,
                "_source": {
                    "first_name": "Jane",
                    "last_name": "Smith",
                    "age": 32,
                    "about": "I like to collect rock albums",
                    "interests": [
                        "music"
                    ]
                }
            }
            ,
            {
                "_index": "megacorp",
                "_type": "employee",
                "_id": "3",
                "_score": 0.016878016,
                "_source": {
                    "first_name": "Jane",
                    "last_name": "lee",
                    "age": 32,
                    "about": "I like to collect rock albums",
                    "interests": [
                        "music"
                    ]
                }
            }
        ]
    }

}默认情况下,Elasticsearch根据结果相关性评分来对结果集进行排序,所谓的「结果相关性
评分」就是文档与查询条件的匹配程度。很显然,排名第一的 John Smith  的 about  字段明确
的写到“rock climbing”。
但是为什么 Jane Smith  也会出现在结果里呢?原因是“rock”在她的 abuot  字段中被提及了。
因为只有“rock”被提及而“climbing”没有,所以她的 _score  要低于John。
这个例子很好的解释了Elasticsearch如何在各种文本字段中进行全文搜索,并且返回相关性
最大的结果集。相关性(relevance)的概念在Elasticsearch中非常重要,而这个概念在传统关
系型数据库中是不可想象的,因为传统数据库对记录的查询只有匹配或者不匹配





短语搜索:


目前我们可以在字段搜索单独的一个词,这挺好的,但是有时候你想要确切的匹配若干个单词或者短语(phrases).


例如我们想要查询同时包含"rock" 和"combing"(并且是相邻的)员工记录。


要做到这个,我们只要将match查询变更为match_phrase查询既可:



http://192.168.32.80:9200/megacorp/employee/_search/
 
                                            POST
{
"query" : {
"match_phrase" : {
"about" : "rock climbing"
}
}
}

查询

{"query":{"match_all":{}}}
易读
结果转换器?
重复请求
显示选项?
{

    "took": 15,
    "timed_out": false,
    "_shards": {
        "total": 5,
        "successful": 5,
        "failed": 0
    },
    "hits": {
        "total": 1,
        "max_score": 0.23013961,
        "hits": [
            {
                "_index": "megacorp",
                "_type": "employee",
                "_id": "1",
                "_score": 0.23013961,
                "_source": {
                    "first_name": "John",
                    "last_name": "Smith",
                    "age": 25,
                    "about": "I love to go rock climbing",
                    "interests": [
                        "sports"
                        ,
                        "music"
                    ]
                }
            }
        ]
    }

}


分析;

最后,我们还有一个需求需要完成:允许管理者在职员中进行分析。

Elasticsearch 有一个功能叫做聚合(aggregations),它允许你在数据上生成复杂的分析统计。它很像SQL中的

GROUP BY 但是功能更强大。



http://192.168.32.80:9200/megacorp/employee/_search/

                                            POST


{
"aggs": {
"all_interests": {
"terms": { "field": "interests" }
}
}


{

    "took": 8,
    "timed_out": false,
    "_shards": {
        "total": 5,
        "successful": 5,
        "failed": 0
    },
    "hits": {
        "total": 3,
        "max_score": 1,
        "hits": [
            {
                "_index": "megacorp",
                "_type": "employee",
                "_id": "2",
                "_score": 1,
                "_source": {
                    "first_name": "Douglas",
                    "last_name": "Fir",
                    "age": 35,
                    "about": "I like to build cabinets",
                    "interests": [
                        "forestry"
                    ]
                }
            }
            ,
            {
                "_index": "megacorp",
                "_type": "employee",
                "_id": "1",
                "_score": 1,
                "_source": {
                    "first_name": "John",
                    "last_name": "Smith",
                    "age": 25,
                    "about": "I love to go rock climbing",
                    "interests": [
                        "sports"
                        ,
                        "music"
                    ]
                }
            }
            ,
            {
                "_index": "megacorp",
                "_type": "employee",
                "_id": "3",
                "_score": 1,
                "_source": {
                    "first_name": "Jane",
                    "last_name": "lee",
                    "age": 32,
                    "about": "I like to collect rock albums",
                    "interests": [
                        "music"
                    ]
                }
            }
        ]
    },
    "aggregations": {
        "all_interests": {
            "doc_count_error_upper_bound": 0,
            "sum_other_doc_count": 0,
            "buckets": [
                {
                    "key": "music",
                    "doc_count": 2
                }
                ,
                {
                    "key": "forestry",
                    "doc_count": 1
                }
                ,
                {
                    "key": "sports",
                    "doc_count": 1
                }
            ]
        }
    }

}




我们可以看到两个职员对音乐有兴趣,一个喜欢林学,一个喜欢运动。这些数据并没有被预
先计算好,它们是实时的从匹配查询语句的文档中动态计算生成的。如果我们想知道所有
姓"Smith"的人最大的共同点(兴趣爱好),我们只需要增加合适的语句既可:


/megacorp/employee/3
{
"first_name" : "Douglas",
"last_name" : "smith",
"age" : 35,
"about": "I like to build cabinets",
"interests": [ "music" ]
}



http://192.168.32.80:9200/megacorp/employee/_search/
                                          
                                           POST

{
"query": {
"match": {
"last_name": "smith"
}
},
"aggs": {
"all_interests": {
"terms": {
"field": "interests"
}
}
}
}


http://192.168.32.80:9200/megacorp/employee/_search/
                                      POST

{
"aggs" : {
"all_interests" : {
"terms" : { "field" : "interests" },
"aggs" : {
"avg_age" : {
"avg" : { "field" : "age" }
}
}
}
}
}

聚合也允许分级汇总。例如,让我们统计每种兴趣下职员的平均年龄:


分布式的特性;


Elasticsearch致力于隐藏分布式系统的复杂性。以下这些操作都是在底层自动完成的:
将你的文档分区到不同的容器或者分片(shards)中,它们可以存在于一个或多个节点
中。
将分片均匀的分配到各个节点,对索引和搜索做负载均衡。
冗余每一个分片,防止硬件故障造成的数据丢失。
将集群中任意一个节点上的请求路由到相应数据所在的节点。
无论是增加节点,还是移除节点,分片都可以做到无缝的扩展和迁移。














上一篇: 入门

下一篇: 入门