欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

DBSCAN聚类point cloud

程序员文章站 2022-07-03 12:00:20
...

之前找到的很多DBSCAN代码都是处理二维点的,而且点的数量比较小,这个是处理三维点的,由于点的数量比较大,所以加入了pcl中的octree、kdtree,用来做邻域搜索,提升代码速度。

代码如下:

#include "stdafx.h"

#include <iostream>
#include <fstream>
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/octree/octree.h>
#include <pcl/kdtree/kdtree_flann.h>

using namespace std;

float eps = 0.5;//邻域距离
int min_pets = 5;//邻域内最少点

class point
{
public:
	float x;
	float y;
	float z;
	int visited = 0;
	int pointtype = 1;//1噪声,2边界点,3核心点
	int cluster = 0;
	vector<int> corepts;//存储邻域内点的索引
	point() {}
	point(float a, float b, float c)
	{
		x = a;
		y = b;
		z = c;
	}
};
vector<point> corecloud;//构建核心点集
vector<point> allcloud;
float distance(point a, point b) {
	return sqrt((a.x - b.x)*(a.x - b.x) + (a.y - b.y)*(a.y - b.y) + (a.z - b.z)*(a.z - b.z));
}

int main(int argc, char** argv)
{
	pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);//初始化点云
	pcl::io::loadPCDFile<pcl::PointXYZ>("xyz3.pcd", *cloud);//加载pcd点云并放入cloud中
	float resolution = 0.5f;//最低一级octree的最小体素的尺寸
	pcl::octree::OctreePointCloudSearch<pcl::PointXYZ> octree(resolution);//初始化octree
	octree.setInputCloud(cloud);
	octree.addPointsFromInputCloud();

	size_t len = cloud->points.size();
	for (size_t i = 0; i < len; i++)
	{
		point pt = point(cloud->points[i].x, cloud->points[i].y, cloud->points[i].z);
		allcloud.push_back(pt);
	}
	//将核心点放在corecloud中,改变allcloud中的pointtype的值
	for (size_t i = 0; i < len; i++)
	{
		vector<int> radiussearch;//存放点的索引
		vector<float> radiusdistance;//存放点的距离平方
		octree.radiusSearch(cloud->points[i], eps, radiussearch, radiusdistance);//八叉树的邻域搜索
		if (radiussearch.size() > min_pets)
			allcloud[i].pointtype = 3;
		corecloud.push_back(allcloud[i]);
	}
	pcl::PointCloud<pcl::PointXYZ>::Ptr corecloud1(new pcl::PointCloud<pcl::PointXYZ>);
	corecloud1->points.resize(corecloud.size());
	for (int i = 0; i < corecloud.size(); i++) {
		corecloud1->points[i].x = corecloud[i].x;
		corecloud1->points[i].y = corecloud[i].y;
		corecloud1->points[i].z = corecloud[i].z;
	}
	pcl::KdTreeFLANN<pcl::PointXYZ> kdtree;
	kdtree.setInputCloud(corecloud1);

	for (int i = 0; i<corecloud.size(); i++) {
		vector<int> pointIdxNKNSearch;//存放点的索引
		vector<float> pointRadiusSquaredDistance;//存放点的距离平方
		octree.radiusSearch(corecloud1->points[i], eps, pointIdxNKNSearch, pointRadiusSquaredDistance);//八叉树的邻域搜索		
		for (int j = 0; j < pointIdxNKNSearch.size(); j++) {
			corecloud[i].corepts.push_back(pointIdxNKNSearch[j]);
		}
	}
	//将所有核心点根据是否密度可达归类,改变核心点cluster的值
	int outcluster = 0;
	for (int i = 0; i<corecloud.size(); i++) {
		stack<point*> ps;
		if (corecloud[i].visited == 1) continue;
		outcluster++;
		corecloud[i].cluster = outcluster;
		ps.push(&corecloud[i]);
		point *v;
		//将密度可达的核心点归为一类
		while (!ps.empty()) {
			v = ps.top();
			v->visited = 1;
			ps.pop();
			for (int j = 0; j<v->corepts.size(); j++) {
				if (corecloud[v->corepts[j]].visited == 1) continue;
				corecloud[v->corepts[j]].cluster = corecloud[i].cluster;
				corecloud[v->corepts[j]].visited = 1;
				ps.push(&corecloud[v->corepts[j]]);
			}
		}
	}
	//找出所有的边界点,噪声点,对边界点分类,更改其cluster
	for (int i = 0; i<len; i++) {
		if (allcloud[i].pointtype == 3) continue;
		for (int j = 0; j<corecloud.size(); j++) {
			if (distance(allcloud[i], corecloud[j])<eps) {
				allcloud[i].pointtype = 2;
				allcloud[i].cluster = corecloud[j].cluster;
				break;
			}
		}
	}
	for (int i = 0; i < len; i++)
	{
		if (allcloud[i].pointtype == 1)
			allcloud[i].cluster = 0;
	}
	//输出边界点和噪声点
	char newFileName[256] = { 0 };
	char indexStr[16] = { 0 };
	strcat(newFileName, "border_noise");
	strcat(newFileName, ".txt");
	ofstream outFile(newFileName, ios_base::out);
	for (size_t j = 0; j < len; ++j)
	{
		if (allcloud[j].pointtype != 3)
			outFile << allcloud[j].x << "\t" << allcloud[j].y << "\t" << allcloud[j].z << "\t" << allcloud[j].cluster << endl;
	}
	//输出核心点集
	char newFileName1[256] = { 0 };
	char indexStr1[16] = { 0 };
	strcat(newFileName1, "corepoint");
	strcat(newFileName1, ".txt");
	ofstream outFile1(newFileName1, ios_base::out);
	for (size_t j = 0; j < corecloud.size(); j++)
	{
		outFile1 << corecloud[j].x << "\t" << corecloud[j].y << "\t" << corecloud[j].z << "\t" << corecloud[j].cluster << endl;
	}
}