欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

FFmpeg音视频同步

程序员文章站 2022-07-02 08:52:03
...

SDL2文章列表

SDL2入门

SDL2事件处理

SDL2纹理渲染

SDL2音频播放

FFmpeg+SDL2实现视频流播放

FFmpeg+SDL2实现音频流播放

前两篇文章分别做了音频和视频的播放,要实现一个完整的简易播放器就必须要做到音视频同步播放了,而音视频同步在音视频开发中又是非常重要的知识点,所以在这里记录下音视频同步相关知识的理解。

音视频同步简介

从前面的学习可以知道,在一个视频文件中,音频和视频都是单独以一条流的形式存在,互不干扰。那么在播放时根据视频的帧率(Frame Rate)和音频的采样率(Sample Rate)通过简单的计算得到其在某一Frame(Sample)的播放时间分别播放,**理论**上应该是同步的。但是由于机器运行速度,解码效率等等因素影响,很有可能出现音频和视频不同步,例如出现视频中人在说话,却只能看到人物嘴动却没有声音,非常影响用户观看体验。

如何做到音视频同步?要知道音视频同步是一个动态的过程,同步是暂时的,不同步才是常态,需要一种随着时间会线性增长的量,视频和音频的播放速度都以该量为标准,播放快了就减慢播放速度;播放慢了就加快播放的速度,在你追我赶中达到同步的状态。目前主要有三种方式实现同步:

  • 将视频和音频同步外部的时钟上,选择一个外部时钟为基准,视频和音频的播放速度都以该时钟为标准。
  • 将音频同步到视频上,就是以视频的播放速度为基准来同步音频。
  • 将视频同步到音频上,就是以音频的播放速度为基准来同步视频。

比较主流的是第三种,将视频同步到音频上。至于为什么不使用前两种,因为一般来说,人对于声音的敏感度更高,如果频繁地去调整音频会产生杂音让人感觉到刺耳不舒服,而人对图像的敏感度就低很多了,所以一般都会采用第三种方式。

复习DTS、PTS和时间基

  • PTS: Presentation Time Stamp,显示渲染用的时间戳,告诉我们什么时候需要显示
  • DTS: Decode Time Stamp,视频解码时的时间戳,告诉我们什么时候需要解码

在音频中PTS和DTS一般相同。但是在视频中,由于B帧的存在,PTS和DTS可能会不同。

实际帧顺序:I B B P

存放帧顺序:I P B B

解码时间戳:1 4 2 3

展示时间戳:1 2 3 4

  • 时间基
/**
 * This is the fundamental unit of time (in seconds) in terms
 * of which frame timestamps are represented.
 * 这是表示帧时间戳的基本时间单位(以秒为单位)。
**/
typedef struct AVRational{
    int num; ///< Numerator 分子
    int den; ///< Denominator 分母
} AVRational;
复制代码

时间基是一个分数,以秒为单位,比如1/50秒,那它到底表示的是什么意思呢?以帧率为例,如果它的时间基是1/50秒,那么就表示每隔1/50秒显示一帧数据,也就是每1秒显示50帧,帧率为50FPS。

每一帧数据都有对应的PTS,在播放视频或音频的时候我们需要将PTS时间戳转化为以秒为单位的时间,用来最后的展示。那如何计算一桢在整个视频中的时间位置?

static inline double av_q2d(AVRational a){
    return a.num / (double) a.den;
}

//计算一桢在整个视频中的时间位置
timestamp(秒) = pts * av_q2d(st->time_base);
复制代码

Audio_Clock

Audio_Clock,也就是Audio的播放时长,从开始到当前的时间。获取Audio_Clock:

if (pkt->pts != AV_NOPTS_VALUE) {
    state->audio_clock = av_q2d(state->audio_st->time_base) * pkt->pts;
}
复制代码

还没有结束,由于一个packet中可以包含多个Frame帧,packet中的PTS比真正的播放的PTS可能会早很多,可以根据Sample Rate 和 Sample Format来计算出该packet中的数据可以播放的时长,再次更新Audio_Clock。

// 每秒钟音频播放的字节数 采样率 * 通道数 * 采样位数 (一个sample占用的字节数)
n = 2 * state->audio_ctx->channels;
state->audio_clock += (double) data_size /
                   (double) (n * state->audio_ctx->sample_rate);
复制代码

最后还有一步,在我们获取这个Audio_Clock时,很有可能音频缓冲区还有没有播放结束的数据,也就是有一部分数据实际还没有播放,所以就要在Audio_Clock上减去这部分数据的播放时间,才是真正的Audio_Clock。

double get_audio_clock(VideoState *state) {
    double pts;
    int buf_size, bytes_per_sec;

    //上一步获取的PTS
    pts = state->audio_clock;
    // 音频缓冲区还没有播放的数据
    buf_size = state->audio_buf_size - state->audio_buf_index; 
    // 每秒钟音频播放的字节数
    bytes_per_sec = state->audio_ctx->sample_rate * state->audio_ctx->channels * 2;
    pts -= (double) buf_size / bytes_per_sec;
    return pts;
}
复制代码

get_audio_clock中返回的才是我们最终需要的Audio_Clock,当前的音频的播放时长。

Video_Clock

Video_Clock,视频播放到当前帧时的已播放的时间长度。

avcodec_send_packet(state->video_ctx, packet);
while (avcodec_receive_frame(state->video_ctx, pFrame) == 0) {
    if ((pts = pFrame->best_effort_timestamp) != AV_NOPTS_VALUE) {
    } else {
        pts = 0;
    }
    pts *= av_q2d(state->video_st->time_base); // 时间基换算,单位为秒

    pts = synchronize_video(state, pFrame, pts);
    
    av_packet_unref(packet);
}
复制代码

旧版的FFmpeg使用av_frame_get_best_effort_timestamp函数获取视频的最合适PTS,新版本的则在解码时生成了best_effort_timestamp。但是依然可能会获取不到正确的PTS,所以在synchronize_video中进行处理。

double synchronize_video(VideoState *state, AVFrame *src_frame, double pts) {

    double frame_delay;

    if (pts != 0) {
        state->video_clock = pts;
    } else {
        pts = state->video_clock;// PTS错误,使用上一次的PTS值
    }
    //根据时间基,计算每一帧的间隔时间
    frame_delay = av_q2d(state->video_ctx->time_base);
    //解码后的帧要延时的时间
    frame_delay += src_frame->repeat_pict * (frame_delay * 0.5);
    state->video_clock += frame_delay;//得到video_clock,实际上也是预测的下一帧视频的时间
    return pts;
}
复制代码

同步

上面两步获得了Audio_Clock和Video_Clock,这样我们就有了视频流中Frame的显示时间,并且得到了作为基准时间的音频播放时长Audio clock ,可以将视频同步到音频了。

  1. 用当前帧的PTS - 上一播放帧的PTS得到一个延迟时间
  2. 用当前帧的PTS和Audio_Clock进行比较,来判断视频的播放速度是快了还是慢了
  3. 根据2的结果,设置播放下一帧的延迟时间
#define AV_SYNC_THRESHOLD 0.01 // 同步最小阈值
#define AV_NOSYNC_THRESHOLD 10.0 //  不同步阈值
double actual_delay, delay, sync_threshold, ref_clock, diff;

// 当前Frame时间减去上一帧的时间,获取两帧间的延时
delay = vp->pts - is->frame_last_pts;
if (delay <= 0 || delay >= 1.0) { 
    // 延时小于0或大于1秒(太长)都是错误的,将延时时间设置为上一次的延时时间
    delay = is->frame_last_delay;
}

// 获取音频Audio_Clock
ref_clock = get_audio_clock(is);
// 得到当前PTS和Audio_Clock的差值
diff = vp->pts - ref_clock;

sync_threshold = (delay > AV_SYNC_THRESHOLD) ? delay : AV_SYNC_THRESHOLD;

// 调整播放下一帧的延迟时间,以实现同步
if (fabs(diff) < AV_NOSYNC_THRESHOLD) {
    if (diff <= -sync_threshold) { // 慢了,delay设为0
        delay = 0;
    } else if (diff >= sync_threshold) { // 快了,加倍delay
        delay = 2 * delay;
    }
 }
is->frame_timer += delay;
// 最终真正要延时的时间
actual_delay = is->frame_timer - (av_gettime() / 1000000.0);
if (actual_delay < 0.010) {
    // 延时时间过小就设置个最小值
    actual_delay = 0.010;
}
// 根据延时时间刷新视频
schedule_refresh(is, (int) (actual_delay * 1000 + 0.5));
复制代码

最后

将视频同步到音频上实现音视频同步基本完成,总体就是动态的过程快了就等待,慢了就加速,在一个你追我赶的状态下实现同步播放。

后面的博客会真正实现一个音视频同步的播放器。