欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

【深度学习】写诗机器人tensorflow实现

程序员文章站 2022-07-01 19:09:44
...

代码地址:https://github.com/hjptriplebee/Chinese_poem_generator, 欢迎fork, star

机器人命名MC胖虎,目前只是最简单粗暴的方法,使用tensorflow完成,有些像人工智障,符合胖虎的人物设定,看一些效果:

【深度学习】写诗机器人tensorflow实现

LSTM的原理网上资料很多,不了解的可以看这里:http://www.jianshu.com/p/9dc9f41f0b29

本文以讲解写诗机器人实现为主,不会讲太多理论和tensorflow使用方法,好下面开始。

训练数据预处理

采用3w首唐诗作为训练数据,在github上dataset文件夹下可以看到,唐诗格式为”题目:诗句“,如下所示:

【深度学习】写诗机器人tensorflow实现

我们首先通过”:“将题目和内容分离,然后做数据清洗过滤一些不好的训练样本,包含特殊符号、字数太少或太多的都要去除,最后在诗的前后分别加上开始和结束符号,用来告诉LSTM这是开头和结尾,这里用方括号表示。

poems = []
file = open(filename, "r")
for line in file:  #every line is a poem
    #print(line)
    title, poem = line.strip().split(":")  #get title and poem
    poem = poem.replace(' ','')
    if '_' in poem or '《' in poem or '[' in poem or '(' in poem or '(' in poem:
        continue
    if len(poem) < 10 or len(poem) > 128:  #filter poem
        continue
    poem = '[' + poem + ']' #add start and end signs
    poems.append(poem)
然后统计每个字出现的次数,并删除出现次数较少的生僻字

#counting words
allWords = {}
for poem in poems:
    for word in poem:
        if word not in allWords:
            allWords[word] = 1
        else:
            allWords[word] += 1
# erase words which are not common
erase = []
for key in allWords:
    if allWords[key] < 2:
        erase.append(key)
for key in erase:
    del allWords[key]
根据字出现的次数排序,建立字到ID的映射。为什么需要排序呢?排序后的ID从一定程度上表示了字的出现频率,两者之间有一定关系,比不排序直接映射更容易使模型学出规律。

添加空格字符,因为诗的长度不一致,需要用空格填补,所以留出空格的ID。最后将诗转成字向量的形式。

wordPairs = sorted(allWords.items(), key = lambda x: -x[1])
words, a= zip(*wordPairs)
words += (" ", )
wordToID = dict(zip(words, range(len(words)))) #word to ID
wordTOIDFun = lambda A: wordToID.get(A, len(words))
poemsVector = [([wordTOIDFun(word) for word in poem]) for poem in poems] # poem to vector
接下来构建训练batch,每一个batch中所有的诗都要补空格直到长度达到最长诗的长度。因为补的都是空格,所以模型可以学出这样一个规律:空格后面都是接着空格。X和Y分别表示输入和输出,输出为输入的错位,即模型看到字得到的输出应该为下一个字。

这里注意一定要用np.copy,坑死我了!

#padding length to batchMaxLength
batchNum = (len(poemsVector) - 1) // batchSize
X = []
Y = []
#create batch
for i in range(batchNum):
    batch = poemsVector[i * batchSize: (i + 1) * batchSize]
    maxLength = max([len(vector) for vector in batch])
    temp = np.full((batchSize, maxLength), wordTOIDFun(" "), np.int32)
    for j in range(batchSize):
        temp[j, :len(batch[j])] = batch[j]
    X.append(temp)
    temp2 = np.copy(temp) #copy!!!!!!
    temp2[:, :-1] = temp[:, 1:]
    Y.append(temp2)

搭建模型

搭建一个LSTM模型,后接softmax,输出为每一个字出现的概率。这里对着LSTM模板抄一份,改改参数就好了。

with tf.variable_scope("embedding"): #embedding
    embedding = tf.get_variable("embedding", [wordNum, hidden_units], dtype = tf.float32)
    inputbatch = tf.nn.embedding_lookup(embedding, gtX)

basicCell = tf.contrib.rnn.BasicLSTMCell(hidden_units, state_is_tuple = True)
stackCell = tf.contrib.rnn.MultiRNNCell([basicCell] * layers)
initState = stackCell.zero_state(np.shape(gtX)[0], tf.float32)
outputs, finalState = tf.nn.dynamic_rnn(stackCell, inputbatch, initial_state = initState)
outputs = tf.reshape(outputs, [-1, hidden_units])

with tf.variable_scope("softmax"):
    w = tf.get_variable("w", [hidden_units, wordNum])
    b = tf.get_variable("b", [wordNum])
    logits = tf.matmul(outputs, w) + b

probs = tf.nn.softmax(logits)

模型训练

先定义输入输出,构建模型,然后设置损失函数、学习率等参数。

gtX = tf.placeholder(tf.int32, shape=[batchSize, None])  # input
gtY = tf.placeholder(tf.int32, shape=[batchSize, None])  # output
logits, probs, a, b, c = buildModel(wordNum, gtX)
targets = tf.reshape(gtY, [-1])
#loss
loss = tf.contrib.legacy_seq2seq.sequence_loss_by_example([logits], [targets],
                                                          [tf.ones_like(targets, dtype=tf.float32)], wordNum)
cost = tf.reduce_mean(loss)
tvars = tf.trainable_variables()
grads, a = tf.clip_by_global_norm(tf.gradients(cost, tvars), 5)
learningRate = learningRateBase
optimizer = tf.train.AdamOptimizer(learningRate)
trainOP = optimizer.apply_gradients(zip(grads, tvars))
globalStep = 0
然后开始训练,训练时先寻找能否找到检查点,找到则还原,否则重新训练。然后按照batch一步步读入数据训练,学习率逐渐递减,每隔几个step就保存一下模型。

with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    saver = tf.train.Saver()
    if reload:
        checkPoint = tf.train.get_checkpoint_state(checkpointsPath)
        # if have checkPoint, restore checkPoint
        if checkPoint and checkPoint.model_checkpoint_path:
            saver.restore(sess, checkPoint.model_checkpoint_path)
            print("restored %s" % checkPoint.model_checkpoint_path)
        else:
            print("no checkpoint found!")

    for epoch in range(epochNum):
        if globalStep % learningRateDecreaseStep == 0: #learning rate decrease by epoch
            learningRate = learningRateBase * (0.95 ** epoch)
        epochSteps = len(X) # equal to batch
        for step, (x, y) in enumerate(zip(X, Y)):
            #print(x)
            #print(y)
            globalStep = epoch * epochSteps + step
            a, loss = sess.run([trainOP, cost], feed_dict = {gtX:x, gtY:y})
            print("epoch: %d steps:%d/%d loss:%3f" % (epoch,step,epochSteps,loss))
            if globalStep%1000==0:
                print("save model")
                saver.save(sess,checkpointsPath + "/poem",global_step=epoch)

自动写诗

在自动写诗之前,我们需要定义一个输出概率对应到单词的功能函数,为了避免每次生成的诗都一样,需要引入一定的随机性。不选择输出概率最高的字,而是将概率映射到一个区间上,在区间上随机采样,输出概率大的字对应的区间大,被采样的概率也大,但胖虎也有小概率会选择其他字。因为每一个字都有这样的随机性,所以每次作出的诗都完全不一样。

def probsToWord(weights, words):
    """probs to word"""
    t = np.cumsum(weights) #prefix sum
    s = np.sum(weights)
    coff = np.random.rand(1)
    index = int(np.searchsorted(t, coff * s)) # large margin has high possibility to be sampled
    return words[index]
然后开始写诗,首先仍然是构建模型,定义相关参数,加载checkpoint。

gtX = tf.placeholder(tf.int32, shape=[1, None])  # input
logits, probs, stackCell, initState, finalState = buildModel(wordNum, gtX)
with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    saver = tf.train.Saver()
    checkPoint = tf.train.get_checkpoint_state(checkpointsPath)
    # if have checkPoint, restore checkPoint
    if checkPoint and checkPoint.model_checkpoint_path:
        saver.restore(sess, checkPoint.model_checkpoint_path)
        print("restored %s" % checkPoint.model_checkpoint_path)
    else:
        print("no checkpoint found!")
        exit(0)
生成generateNum这么多首诗,每首诗以左中括号开始,以右中括号或空格结束,每次生成的prob用probsToWord方法转成字。

poems = []
for i in range(generateNum):
    state = sess.run(stackCell.zero_state(1, tf.float32))
    x = np.array([[wordToID['[']]]) # init start sign
    probs1, state = sess.run([probs, finalState], feed_dict={gtX: x, initState: state})
    word = probsToWord(probs1, words)
    poem = ''
    while word != ']' and word != ' ':
        poem += word
        if word == '。':
            poem += '\n'
        x = np.array([[wordToID[word]]])
        #print(word)
        probs2, state = sess.run([probs, finalState], feed_dict={gtX: x, initState: state})
        word = probsToWord(probs2, words)
    print(poem)
    poems.append(poem)
还可以写藏头诗,前面的搭建模型,加载checkpoint等内容一样,作诗部分,每遇到标点符号,人为控制下一个输入的字为指定的字就可以了。需要注意,在标点符号后,因为没有选择模型输出的字,所以需要将state往前滚动一下,直接跳过这个字的生成。

flag = 1
endSign = {-1: ",", 1: "。"}
poem = ''
state = sess.run(stackCell.zero_state(1, tf.float32))
x = np.array([[wordToID['[']]])
probs1, state = sess.run([probs, finalState], feed_dict={gtX: x, initState: state})
for c in characters:
    word = c
    flag = -flag
    while word != ']' and word != ',' and word != '。' and word != ' ':
        poem += word
        x = np.array([[wordToID[word]]])
        probs2, state = sess.run([probs, finalState], feed_dict={gtX: x, initState: state})
        word = probsToWord(probs2, words)

    poem += endSign[flag]
    # keep the context, state must be updated
    if endSign[flag] == '。':
        probs2, state = sess.run([probs, finalState],
                                 feed_dict={gtX: np.array([[wordToID["。"]]]), initState: state})
        poem += '\n'
    else:
        probs2, state = sess.run([probs, finalState],
                                 feed_dict={gtX: np.array([[wordToID[","]]]), initState: state})

print(characters)
print(poem)
大约在GPU上训练20epoch效果就不错了!

代码地址:https://github.com/hjptriplebee/Chinese_poem_generator, 欢迎fork, star

估计后续还会出看图写诗机器人-MC胖虎2.0

说了这么多胖虎该生气了!

【深度学习】写诗机器人tensorflow实现