欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

第十四周作业

程序员文章站 2022-07-01 18:22:56
...

今天老师讲了 pandas ,要求我们用 pandas 、numpy 等工具完成下面两项作业。

老师上课介绍了 Jupyter ,用它来记录 Python 的历史运行记录非常方便,而且还能一键排版,生成 md ,粘上博客。本文就是用 Jupyter 生成的。

%matplotlib inline

import random

import numpy as np
import scipy as sp
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

import statsmodels.api as sm
import statsmodels.formula.api as smf

sns.set_context("talk")

Anscombe’s quartet

Anscombe’s quartet comprises of four datasets, and is rather famous. Why? You’ll find out in this exercise.

anascombe = pd.read_csv('data/anscombe.csv')
anascombe.head()
.dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
dataset x y
0 I 10.0 8.04
1 I 8.0 6.95
2 I 13.0 7.58
3 I 9.0 8.81
4 I 11.0 8.33

Part 1

For each of the four datasets…
- Compute the mean and variance of both x and y
- Compute the correlation coefficient between x and y
- Compute the linear regression line: y=β0+β1x+ϵ (hint: use statsmodels and look at the Statsmodels notebook)

anascombe.groupby(['dataset'])[['x', 'y']].mean()
.dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
x y
dataset
I 9.0 7.500909
II 9.0 7.500909
III 9.0 7.500000
IV 9.0 7.500909
anascombe.groupby(['dataset'])[['x', 'y']].var()
.dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
x y
dataset
I 11.0 4.127269
II 11.0 4.127629
III 11.0 4.122620
IV 11.0 4.123249
anascombe['x'].corr(anascombe['y'])
0.81636624276147

We can see that the correlation coefficient between x and y is 0.81636624276147

lin_model = smf.ols('y ~ x', anascombe).fit()
lin_model.summary()
OLS Regression Results
Dep. Variable: y R-squared: 0.666
Model: OLS Adj. R-squared: 0.659
Method: Least Squares F-statistic: 83.92
Date: Tue, 12 Jun 2018 Prob (F-statistic): 1.44e-11
Time: 17:11:06 Log-Likelihood: -67.358
No. Observations: 44 AIC: 138.7
Df Residuals: 42 BIC: 142.3
Df Model: 1
Covariance Type: nonrobust
coef std err t P>|t| [0.025 0.975]
Intercept 3.0013 0.521 5.765 0.000 1.951 4.052
x 0.4999 0.055 9.161 0.000 0.390 0.610














Omnibus: 1.513 Durbin-Watson: 2.327
Prob(Omnibus): 0.469 Jarque-Bera (JB): 0.896
Skew: 0.339 Prob(JB): 0.639
Kurtosis: 3.167 Cond. No. 29.1


Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

We can see that β0=3.0013,β1=0.4999,ε=0.521

Part 2

Using Seaborn, visualize all four datasets.

hint: use sns.FacetGrid combined with plt.scatter

g = sns.FacetGrid(anascombe, hue='dataset', size=7.5)
g.map(plt.scatter,'x','y').add_legend()
<seaborn.axisgrid.FacetGrid at 0x7f12fbb63128>

第十四周作业