欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

TCP协议

程序员文章站 2022-07-01 17:18:46
...

4.1 引言

尽管TCP和UDP都使用相同的网络层(I P),TCP却向应用层提供与UDP完全不同的服务。 TCP提供一种面向连接的、可靠的字节流服务。 所以TCP要比UDP可靠的多,UDP是把数据直接发出去,而不管对方是不是在收信,就算是UDP无法送达,也不会产生ICMP差错报文(ICMP:2.8小结)。

4.2 TCP的服务

TCP保证可靠性的简单工作原理如下 :

        应用数据被分割成T C P认为最适合发送的数据块。这和 U D P完全不同,应用程序产生的 数据报长度将保持不变。由 T C P传递给I P的信息单位称为报文段或段( s e g m e n t)(参见 图1 - 7)。在1 8 . 4节我们将看到T C P如何确定报文段的长度。
        当T C P发出一个段后,它启动一个定时器,等待目的端确认收到这个报文段。如果不能 及时收到一个确认,将重发这个报文段。在第 2 1章我们将了解T C P协议中自适应的超时 及重传策略。
        当T C P收到发自T C P连接另一端的数据,它将发送一个确认。这个确认不是立即发送, 通常将推迟几分之一秒,这将在 1 9 . 3节讨论。
        T C P将保持它首部和数据的检验和。这是一个端到端的检验和,目的是检测数据在传输 过程中的任何变化。如果收到段的检验和有差错, T C P将丢弃这个报文段和不确认收到 此报文段(希望发端超时并重发)。
        既然T C P报文段作为I P数据报来传输,而 I P数据报的到达可能会失序,因此 T C P报文段 的到达也可能会失序。如果必要, T C P将对收到的数据进行重新排序,将收到的数据以 正确的顺序交给应用层。
        既然I P数据报会发生重复,T C P的接收端必须丢弃重复的数据。
        T C P还能提供流量控制。 T C P连接的每一方都有固定大小的缓冲空间。 T C P的接收端只 允许另一端发送接收端缓冲区所能接纳的数据。这将防止较快主机致使较慢主机的缓冲 区溢出

从这段话中可以看到,TCP中保持可靠性的方式就是超时重发,这是有道理的,虽然TCP也可以用各种各样的ICMP报文来处理这些,但是这也不是可靠的,最可靠的方式就是只要不得到确认,就重新发送数据报,直到得到对方的确认为止。

4.3 TCP 首部格式

TCP协议

序号 :用于对字节流进行编号,例如序号为 301,表示第一个字节的编号为 301,如果携带的数据长度为 100 字节,那么下一个报文段的序号应为 401。
确认号 :期望收到的下一个报文段的序号。例如 B 正确收到 A 发送来的一个报文段,序号为 501,携带的数据长度为 200 字节,因此 B 期望下一个报文段的序号为 701,B 发送给 A 的确认报文段中确认号就为 701。
数据偏移 :指的是数据部分距离报文段起始处的偏移量,实际上指的是首部的长度。
确认 ACK :当 ACK=1 时确认号字段有效,否则无效。TCP 规定,在连接建立后所有传送的报文段都必须把 ACK 置 1。
同步 SYN :在连接建立时用来同步序号。当 SYN=1,ACK=0 时表示这是一个连接请求报文段。若对方同意建立连接,则响应报文中 SYN=1,ACK=1。
终止 FIN :用来释放一个连接,当 FIN=1 时,表示此报文段的发送方的数据已发送完毕,并要求释放连接。
窗口 :窗口值作为接收方让发送方设置其发送窗口的依据。之所以要有这个限制,是因为接收方的数据缓存空间是有限的。

4.4 TCP 的三次握手

TCP协议

假设 A 为客户端,B 为服务器端。

首先 B 处于 LISTEN(监听)状态,等待客户的连接请求。
A 向 B 发送连接请求报文,SYN=1,ACK=0,选择一个初始的序号 x。
B 收到连接请求报文,如果同意建立连接,则向 A 发送连接确认报文,SYN=1,ACK=1,确认号为 x+1,同时也选择一个初始的序号 y。
A 收到 B 的连接确认报文后,还要向 B 发出确认,确认号为 y+1,序号为 x+1。
B 收到 A 的确认后,连接建立。

三次握手的原因

第三次握手是为了防止失效的连接请求到达服务器,让服务器错误打开连接。

客户端发送的连接请求如果在网络中滞留,那么就会隔很长一段时间才能收到服务器端发回的连接确认。客户端等待一个超时重传时间之后,就会重新请求连接。但是这个滞留的连接请求最后还是会到达服务器,如果不进行三次握手,那么服务器就会打开两个连接。如果有第三次握手,客户端会忽略服务器之后发送的对滞留连接请求的连接确认,不进行第三次握手,因此就不会再次打开连接。

4.5 TCP 的四次挥手

TCP协议

以下描述不讨论序号和确认号,因为序号和确认号的规则比较简单。并且不讨论 ACK,因为 ACK 在连接建立之后都为 1。

A 发送连接释放报文,FIN=1。
B 收到之后发出确认,此时 TCP 属于半关闭状态,B 能向 A 发送数据但是 A 不能向 B 发送数据。
当 B 不再需要连接时,发送连接释放报文,FIN=1。
A 收到后发出确认,进入 TIME-WAIT 状态,等待 2 MSL(最大报文存活时间)后释放连接。
B 收到 A 的确认后释放连接。

四次挥手的原因

客户端发送了 FIN 连接释放报文之后,服务器收到了这个报文,就进入了 CLOSE-WAIT 状态。这个状态是为了让服务器端发送还未传送完毕的数据,传送完毕之后,服务器会发送 FIN 连接释放报文。

TIME_WAIT

客户端接收到服务器端的 FIN 报文后进入此状态,此时并不是直接进入 CLOSED 状态,还需要等待一个时间计时器设置的时间 2MSL。这么做有两个理由:

确保最后一个确认报文能够到达。如果 B 没收到 A 发送来的确认报文,那么就会重新发送连接释放请求报文,A 等待一段时间就是为了处理这种情况的发生。
等待一段时间是为了让本连接持续时间内所产生的所有报文都从网络中消失,使得下一个新的连接不会出现旧的连接请求报文。

4.6TCP 可靠传输

TCP 使用超时重传来实现可靠传输:如果一个已经发送的报文段在超时时间内没有收到确认,那么就重传这个报文段。

一个报文段从发送再到接收到确认所经过的时间称为往返时间 RTT,加权平均往返时间 RTTs 计算如下:
RTTs=(1−a)∗(RTTs)+a∗RTT
RTTs=(1−a)∗(RTTs)+a∗RTT
超时时间 RTO 应该略大于 RTTs,TCP 使用的超时时间计算如下:
RTO=RTTs+4∗RTTd

RTO=RTTs+4∗RTTd
其中 RTT d为偏差。
4.7 TCP 滑动窗口

窗口是缓存的一部分,用来暂时存放字节流。发送方和接收方各有一个窗口,接收方通过 TCP 报文段中的窗口字段告诉发送方自己的窗口大小,发送方根据这个值和其它信息设置自己的窗口大小。

发送窗口内的字节都允许被发送,接收窗口内的字节都允许被接收。如果发送窗口左部的字节已经发送并且收到了确认,那么就将发送窗口向右滑动一定距离,直到左部第一个字节不是已发送并且已确认的状态;接收窗口的滑动类似,接收窗口左部字节已经发送确认并交付主机,就向右滑动接收窗口。

接收窗口只会对窗口内最后一个按序到达的字节进行确认,例如接收窗口已经收到的字节为 {31, 34, 35},其中 {31} 按序到达,而 {34, 35} 就不是,因此只对字节 31 进行确认。发送方得到一个字节的确认之后,就知道这个字节之前的所有字节都已经被接收。

TCP协议
4.8 TCP 流量控制

流量控制是为了控制发送方发送速率,保证接收方来得及接收。

接收方发送的确认报文中的窗口字段可以用来控制发送方窗口大小,从而影响发送方的发送速率。将窗口字段设置为 0,则发送方不能发送数据。
4.9 TCP 拥塞控制

如果网络出现拥塞,分组将会丢失,此时发送方会继续重传,从而导致网络拥塞程度更高。因此当出现拥塞时,应当控制发送方的速率。这一点和流量控制很像,但是出发点不同。流量控制是为了让接收方能来得及接收,而拥塞控制是为了降低整个网络的拥塞程度。
TCP协议

TCP 主要通过四个算法来进行拥塞控制:慢开始、拥塞避免、快重传、快恢复。

发送方需要维护一个叫做拥塞窗口(cwnd)的状态变量,注意拥塞窗口与发送方窗口的区别:拥塞窗口只是一个状态变量,实际决定发送方能发送多少数据的是发送方窗口。

为了便于讨论,做如下假设:

接收方有足够大的接收缓存,因此不会发生流量控制;
虽然 TCP 的窗口基于字节,但是这里设窗口的大小单位为报文段。

TCP协议

  1. 慢开始与拥塞避免

发送的最初执行慢开始,令 cwnd = 1,发送方只能发送 1 个报文段;当收到确认后,将 cwnd 加倍,因此之后发送方能够发送的报文段数量为:2、4、8 …

注意到慢开始每个轮次都将 cwnd 加倍,这样会让 cwnd 增长速度非常快,从而使得发送方发送的速度增长速度过快,网络拥塞的可能性也就更高。设置一个慢开始门限 ssthresh,当 cwnd >= ssthresh 时,进入拥塞避免,每个轮次只将 cwnd 加 1。

如果出现了超时,则令 ssthresh = cwnd / 2,然后重新执行慢开始。
2. 快重传与快恢复

在接收方,要求每次接收到报文段都应该对最后一个已收到的有序报文段进行确认。例如已经接收到 M1 和 M2,此时收到 M4,应当发送对 M2的确认。

在发送方,如果收到三个重复确认,那么可以知道下一个报文段丢失,此时执行快重传,立即重传下一个报文段。例如收到三个 M2,则 M3 丢失,立即重传 M3。

在这种情况下,只是丢失个别报文段,而不是网络拥塞。因此执行快恢复,令 ssthresh = cwnd / 2 ,cwnd = ssthresh,注意到此时直接进入拥塞避免。

慢开始和快恢复的快慢指的是 cwnd 的设定值,而不是 cwnd 的增长速率。慢开始 cwnd 设定为 1,而快恢复 cwnd 设定为 ssthresh。

TCP协议
五.问题总结
1.TCP和UDP有什么不同?

首先TCP和UDP都是传输层协议,它们的网络层协议都是IP协议,而IP协议具有两个特点:无连接、不可靠,UDP**(用户数据报协议)保留IP协议的特点,常用于广播和多播,而TCP(传输控制协议 (面向流字符的协议))**通过三次握手机制,为客户端和服务器提供全双工服务,同时还提供了超时和重发机制,保证传输数据不被丢失。

2.TCP协议如何保证数据不被丢失?

网络层协议还有个ICMP协议,ICMP协议常常认为是IP协议的一部分,由于IP协议对上层运输层和下层物理链路层是透明的,当发送数据报被丢弃时,ICMP会把错误信息反馈给TCP,而UDP不会得到任何返回信息,TCP解析后会进行数据重传。由于IP发送数据报可能会分片发送,TCP协议还有对数据进行重排在给应用增层。

3.为什么ICMP会把数据报异返回给TCP而不是UDP?

TCP的首部长度为20个字节,而UDP的首部长度为8字节,多的12个字节中有4个字节保存的是32位的ICMP信息,而ICMP数据包由8bit的错误类型和8bit的代码和16bit的校验和组成。

4.TCP和UDP每次传输的数据大小?

UDP是无连接的,发送一次数据报链接就断开了,因为32位IP是由4位(版本)+4位(头长度)+8位(服务类型)+16位(总长度:报头区+数据区)组成的所以最大传输数据为2的16次幂64K,UDP首部8位IP首部20位,所以UDP理论最大传输数据为64K-1bit-20bit-8bit(事实上受物理网络的限制,要比这个数值小很多) 。
TCP提供全双工服务,由于物理网络层一般要限制每次发送数据帧的最大长度,IP发送数据会分片发送,MTU(网络传输最大报文包)最大值为1500bit,所以TCP数据报最大为1500-20-20=1460bit(IP首部个TCP首部都是20bit),理想状态下**MSS(网络传输数据最大值 )**等于MTU,当然如果对于非本地的IP,这个MSS可能就只有536字节,而且,如果中间的传输网络的MSS更佳的小的话,这个值还会变得更小。

作者:zpoison
来源:CSDN
原文:https://blog.csdn.net/zpoison/article/details/86528327
版权声明:本文为博主原创文章,转载请附上博文链接!

上一篇: 进程通信

下一篇: UDP通信