欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

Tensorflow中k.gradients()和tf.stop_gradient()用法说明

程序员文章站 2022-03-12 10:57:24
上周在实验室开荒某个代码,看到中间这么一段,对tensorflow中的stop_gradient()还不熟悉,特此周末进行重新并总结。y = xx + k.stop_gradient(rounded...

上周在实验室开荒某个代码,看到中间这么一段,对tensorflow中的stop_gradient()还不熟悉,特此周末进行重新并总结。

y = xx + k.stop_gradient(rounded - xx)

这代码最终调用位置在tensoflow.python.ops.gen_array_ops.stop_gradient(input, name=none),关于这段代码为什么这样写的意义在文末给出。

【stop_gradient()意义】

用stop_gradient生成损失函数w.r.t.的梯度。

【tf.gradients()理解】

tf中我们只需要设计我们自己的函数,tf提供提供强大的自动计算函数梯度方法,tf.gradients()。

tf.gradients(
 ys,
 xs,
 grad_ys=none,
 name='gradients',
 colocate_gradients_with_ops=false,
 gate_gradients=false,
 aggregation_method=none,
 stop_gradients=none,
 unconnected_gradients=tf.unconnectedgradients.none
)

gradients() adds ops to the graph to output the derivatives of ys with respect to xs. it returns a list of tensor of length len(xs) where each tensor is the sum(dy/dx) for y in ys.

1、tf.gradients()实现ys对xs的求导

2、ys和xs可以是tensor或者list包含的tensor

3、求导返回值是一个list,list的长度等于len(xs)

eg.假设返回值是[grad1, grad2, grad3],ys=[y1, y2],xs=[x1, x2, x3]。则计算过程为:

Tensorflow中k.gradients()和tf.stop_gradient()用法说明

import numpy as np
import tensorflow as tf
 
#构造数据集
x_pure = np.random.randint(-10, 100, 32)
x_train = x_pure + np.random.randn(32) / 32
y_train = 3 * x_pure + 2 + np.random.randn(32) / 32
 
x_input = tf.placeholder(tf.float32, name='x_input')
y_input = tf.placeholder(tf.float32, name='y_input')
w = tf.variable(2.0, name='weight')
b = tf.variable(1.0, name='biases')
y = tf.add(tf.multiply(x_input, w), b)
 
loss_op = tf.reduce_sum(tf.pow(y_input - y, 2)) / (2 * 32)
train_op = tf.train.gradientdescentoptimizer(0.01).minimize(loss_op)
gradients_node = tf.gradients(loss_op, w)
 
sess = tf.session()
init = tf.global_variables_initializer()
sess.run(init)
 
for i in range(20):
 _, gradients, loss = sess.run([train_op, gradients_node, loss_op], feed_dict={x_input: x_train[i], y_input: y_train[i]})
 print("epoch: {} \t loss: {} \t gradients: {}".format(i, loss, gradients))
sess.close()

自定义梯度和更新函数

import numpy as np
import tensorflow as tf
 
#构造数据集
x_pure = np.random.randint(-10, 100, 32)
x_train = x_pure + np.random.randn(32) / 32
y_train = 3 * x_pure + 2 + np.random.randn(32) / 32
 
x_input = tf.placeholder(tf.float32, name='x_input')
y_input = tf.placeholder(tf.float32, name='y_input')
w = tf.variable(2.0, name='weight')
b = tf.variable(1.0, name='biases')
y = tf.add(tf.multiply(x_input, w), b)
 
loss_op = tf.reduce_sum(tf.pow(y_input - y, 2)) / (2 * 32)
# train_op = tf.train.gradientdescentoptimizer(0.01).minimize(loss_op)
 
#自定义权重更新
grad_w, grad_b = tf.gradients(loss_op, [w, b])
new_w = w.assign(w - 0.01 * grad_w)
new_b = b.assign(b - 0.01 * grad_b)
 
init = tf.global_variables_initializer()
sess = tf.session()
sess.run(init)
 
for i in range(20):
 _, gradients, loss = sess.run([new_w, new_b, loss_op], feed_dict={x_input: x_train[i], y_input: y_train[i]})
 print("epoch: {} \t loss: {} \t gradients: {}".format(i, loss, gradients))
sess.close()

【tf.stop_gradient()理解】

在tf.gradients()参数中存在stop_gradients,这是一个list,list中的元素是tensorflow graph中的op,一旦进入这个list,将不会被计算梯度,更重要的是,在该op之后的bp计算都不会运行。

import numpy as np
import tensorflow as tf
 
a = tf.constant(0.)
b = 2 * a
c = a + b
g = tf.gradients(c, [a, b])
 
with tf.session() as sess:
 tf.global_variables_initializer().run()
 print(sess.run(g))
 
#输出[3.0, 1.0]

在用一个stop_gradient()的例子

import tensorflow as tf
 
#实验一
w1 = tf.variable(2.0)
w2 = tf.variable(2.0)
a = tf.multiply(w1, 3.0)
a_stoped = tf.stop_gradient(a)
 
# b=w1*3.0*w2
b = tf.multiply(a_stoped, w2)
gradients = tf.gradients(b, xs=[w1, w2])
print(gradients)
#输出[none, <tf.tensor 'gradients/mul_1_grad/reshape_1:0' shape=() dtype=float32>]
 
#实验二
a = tf.variable(1.0)
b = tf.variable(1.0)
c = tf.add(a, b)
c_stoped = tf.stop_gradient(c)
d = tf.add(a, b)
e = tf.add(c_stoped, d)
gradients = tf.gradients(e, xs=[a, b])
with tf.session() as sess:
 tf.global_variables_initializer().run()
 print(sess.run(gradients))
 
#因为梯度从另外地方传回,所以输出 [1.0, 1.0]

【答案】

开始提出的问题,为什么存在那段代码:

t = g(x)

y = t + tf.stop_gradient(f(x) - t)

这里,我们本来的前向传递函数是xx,但是想要在反向时传递的函数是g(x),因为在前向过程中,tf.stop_gradient()不起作用,因此+t和-t抵消掉了,只剩下f(x)前向传递;而在反向过程中,因为tf.stop_gradient()的作用,使得f(x)-t的梯度变为了0,从而只剩下g(x)在反向传递。

以上这篇tensorflow中k.gradients()和tf.stop_gradient()用法说明就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。