线性回归之随机梯度下降(sgd)
程序员文章站
2022-06-27 10:37:19
...
梯度下降的原理:梯度下降
普通梯度下降bgd的方法简单暴力,但是调整速度比较慢。
如果不想等所有数据都计算完了才开始调整w,而是计算完数据的一部分(batch_size)后就立即调整w,说白了就是在训练过程中进行权重的更新。
这样就成了随机梯度下降
主要优点有:
* 收敛速度更快,
* 避免过拟合的问题。
代码更新如下:
'''
随机全梯度下降方法
改进:进行到一部分的时候即更新权重
'''
import numpy as np
import math
print(__doc__)
sample = 10
num_input = 5
#加入训练数据
np.random.seed(0)
normalRand = np.random.normal(0,0.1,sample) # 10个均值为0方差为0.1 的随机数 (b)
weight = [7,99,-1,-333,0.06] # 1 * 5 权重
x_train = np.random.random((sample, num_input)) #x 数据(10 * 5)
y_train = np.zeros((sample,1)) # y数据(10 * 1)
for i in range (0,len(x_train)):
total = 0
for j in range(0,len(x_train[i])):
total += weight[j]*x_train[i,j]
y_train[i] = total+ normalRand[i]
# 训练
np.random.seed(0)
weight = np.random.random(num_input+1)
rate = 0.04
batch = 3
def train(x_train,y_train):
#计算损失
global weight,rate
predictY = np.zeros((len(x_train)))
for i in range(0,len(x_train)):
predictY[i] = np.dot(x_train[i],weight[0:num_input])+ weight[num_input]
loss = 0
for i in range(0,len(x_train)):
loss += (predictY[i]-y_train[i])**2
for i in range(0,len(weight)-1):
grade = 0
for j in range(0,len(x_train)):
grade += 2*(predictY[j]-y_train[j])*x_train[j,i]
weight[i] = weight[i] - rate*grade
grade = 0
for j in range(0,len(x_train)):
grade += 2*(predictY[j]-y_train[j])
weight[num_input] = weight[num_input] - rate*grade
return loss
for epoch in range(0,100):
begin = 0
while begin < len(x_train):
end = begin + batch
if end > len(x_train):
end = len(x_train)
loss = train(x_train[begin:end],y_train[begin:end])
begin = end
print("epoch: %d-loss: %f"%(epoch,loss)) #打印迭代次数和损失函数
print(weight)