函数的调用def
程序员文章站
2022-06-25 19:20:04
...
背景
之前一直没怎么自己写过函数,后来程序太大了,不用函数分块的话,显得比较乱
问题来了,之前一直停留在理解的层次,只是能够看懂别人写的函数代码,自己亲自动手一写就抓瞎了
昨天晚上反复检查了半天,也没发现问题所在,今天经过师兄的指点,恍然大悟
这个故事告诉我们要是要多多交流,不懂就问,很多时候自己琢磨半天也弄不明白,可能别人指点一下就清楚了。
talk is cheap,show me code
Error : all_opentimes is not defined
定义与调用
#基本的函数框架
def function_1():
return a
def function_2():
return b
def function_3():
return c
if __name__ == '__main__':
function_1()
function_2()
function_3()
上述代码是基本的函数框架,
if name == ‘main’: #这个后面是调用函数的代码行,是主干,依次运行function_1,function_2,function_3
这是一种运行方式
但是我昨天写的代码有点不一样,我的function_2中用到了function_1中的处理结果。但我还是按上述代码写的,自然就运行不了。
需要这样修改
#基本的函数框架
def function_1():
return a
def function_2():
a = function_1()
return b
def function_3():
return c
if __name__ == '__main__':
function_1()
function_2()
function_3()
需要在function_2中调用function_1,并且需要创建一个变量来储存这个调用值
当然函数还有形参和实参的概念,形参就是def function_1() 括号里面的参数,实参是主干中 调用代码行括号里面的参数,比如
#基本的函数框架
def function_1(形参1):
a = 形参1
return a
def function_2():
a = function_1(形参2)
return b
def function_3(形参3):
return c
if __name__ == '__main__':
function_1(实参1)
function_2(实参2)
function_3(实参3)
实参是输入的参数,方便我后续随意更改输入参数
形参就是参与这个函数运算的参数,作为一个接口,当没有输入参数时,形参和实参都可以空着
昨日代码
# -*- coding: utf-8 -*-
import numpy as np
import pandas as pd
import os
from datetime import datetime
import matplotlib.pyplot as plt
import re
import time
def readfile(months,last_days):
#months = ['01', '02', '03', '04', '05', '06', '07', '08', '09', '10', '11', '12']
#last_days = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]
t_start = time.clock() #起始时间,用于监测代码的运行时间
# months = ['06']
# last_days = [30]
for month,last_day in zip(months,last_days):
path = 'C:\\Users\\hao\\Desktop\\time开窗模型\\源数据\\48NNJZ03_M_2017-{}.xlsx'.format(month) #
b_1 = pd.ExcelFile(path)
Sheet_names = b_1.sheet_names
place_number = 0 #有开窗记录的地点数目
all_opentimes = [] #所有的开窗时刻记录
all_openstates = [] #所有的开窗状态记录
for Sheet_name in Sheet_names:
#if (not re.search('卧', Sheet_name) == None) and (not re.search('窗', Sheet_name) == None) and (re.search('阳台', Sheet_name) == None) and (re.search('客厅', Sheet_name) == None) and (re.search('厨房', Sheet_name) == None):
if (not re.search('卧', Sheet_name) == None) and (not re.search('窗', Sheet_name) == None) and (re.search('阳台', Sheet_name) == None) and (re.search('厨房', Sheet_name) == None):
place_number += 1
print('有开窗记录的sheet数量:%d次'%place_number)
df = pd.read_excel(path, sheet_name=Sheet_name)
temp_columns = ['采集时间', '状态']
df = df[temp_columns].dropna()
#all_openstates = df['状态'].tolist()
all_openstates = np.array(df['状态'])
#print(df)
for i in range(len(df['采集时间'])):
q_1 = str(df.iloc[i, 0])[:10]
q_1 = q_1.split('-')
#print(q_1)
q_2 = str(df.iloc[i, 0])[11:]
q_2 = q_2.split(':')
#print(q_2)
q_3 = q_1[0] + q_1[1] + q_1[2] + q_2[0] + q_2[1] + q_2[2]
#print(q_3)
all_opentimes.append(q_3)
#print(all_opentimes)
print('all_opentimes:%d长度'%len(all_opentimes))
#return all_opentimes
#return all_openstates
#提取天气栏里面的信息
weather_times,weather_temps = [],[] #天气栏中的时刻和温度
df = pd.read_excel(path, sheet_name='天气')
temp_columns = ['采集时间', '温度(℃)']
df = df[temp_columns].dropna()
#weather_temps = df['温度(℃)'].tolist()
weather_temps = np.array(df['温度(℃)'])
for i in range(len(df['采集时间'])):
q_1 = str(df.iloc[i, 0])[:10]
q_1 = q_1.split('-')
#print(q_1)
q_2 = str(df.iloc[i, 0])[11:]
q_2 = q_2.split(':')
#print(q_2)
q_3 = q_1[0] + q_1[1] + q_1[2] + q_2[0] + q_2[1] + q_2[2]
#print(q_3)
weather_times.append(q_3)
print('weather_times长度%d'%len(weather_times))
#return weather_times,weather_temps
t_end = time.clock()
run_time = t_end - t_start
print('{}函数耗时:%ds'.format('readfile')%run_time)
#print(all_opentimes)
return all_opentimes, all_openstates, weather_times, weather_temps
#return all_openstates
def dealwithfile():
t_start = time.clock()
all_opentimes, all_openstates, weather_times, weather_temps = readfile(months,last_days)
#(all_opentimes) = read()
new_temps, new_humidity = [], []
for all_opentime in all_opentimes:
break_number = 0
for weather_time in weather_times:
if (all_opentime <= weather_time) and (break_number == 0):
new_temps.append(weather_temps[weather_times.index(weather_time)])
break_number += 1
print('new_temps长度%d'%len(new_temps))
if len(all_opentimes) == len(new_temps) + 1: #防止出现最后一次开窗时间比最后一次温度数据时间更晚
new_temps.append(weather_temps[-1])
t_end = time.clock()
run_time = t_end - t_start
print('{}函数耗时:'.format('find'), run_time)
return new_temps, new_humidity
def savefile():
all_opentimes, all_openstates, weather_times, weather_temps = readfile(months,last_days)
new_temps, new_humidity = dealwithfile()
df = pd.DataFrame([all_opentimes, new_temps])
#df = pd.concat
df.to_excel(r'C:\Users\hao\Desktop\test.xlsx', index=False)
if __name__ == '__main__':
months = ['06']
last_days = [30]
# readfile(months, last_days)
# dealwithfile()
savefile()
推荐阅读
-
Python简单格式化时间的方法【strftime函数】
-
Python3的urllib.parse常用函数小结(urlencode,quote,quote_plus,unquote,unquote_plus等)
-
用MySQL函数清除字符串首尾空白字符的方法
-
WPF利用RPC调用其他进程的方法详解
-
C#和lua相互调用的方法教程
-
python中使用ctypes调用so传参设置遇到的问题及解决方法
-
解决Java调用BAT批处理不弹出cmd窗口的方法分析
-
Python函数的周期性执行实现方法
-
解析C#中委托的同步调用与异步调用(实例详解)
-
基于使用BeginInvoke,EndInvoke异步调用委托的实现代码