欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

Python数学建模库StatsModels统计回归简介初识

程序员文章站 2022-06-25 10:27:15
目录1、关于 statsmodels1、关于 statsmodelsstatsmodels()是一个python库,用于拟合多种统计模型,执行统计测试以及数据探索和可视化。2、文档最新版本的文档位于:...

1、关于 statsmodels

statsmodels()是一个python库,用于拟合多种统计模型,执行统计测试以及数据探索和可视化。

2、文档

最新版本的文档位于:

3、主要功能

1.线性回归模型:

  • 普通最小二乘法
  • 广义最小二乘法
  • 加权最小二乘法
  • 具有自回归误差的最小二乘法
  • 分位数回归
  • 递归最小二乘法

2.具有混合效应和方差分量的混合线性模型

3.glm:支持所有一个参数的广义线性模型 指数族分布

4.二项和poisson的贝叶斯混合glm

5.gee:单向聚类或纵向数据的广义估计方程

6.离散模型:

  •  logit和probit
  • 多项式logit(mnlogit)
  • 泊松与广义泊松回归
  • 负二项回归
  • 零膨胀计数模型

7. rlm:支持多个m估计的鲁棒线性模型。

8.时间序列分析:时间序列分析模型

  • 完整的状态空间建模框架
  • 季节性arima和arimax模型
  • varma和varmax型号
  • 动态因素模型
  • 未观察到的组件模型
  • 马尔可夫切换模型(msar),也称为隐马尔可夫模型(hmm)
  • 单变量时间序列分析:ar,arima
  • 向量自回归模型、var和结构var
  • 矢量误差修正模型,vecm
  • 指数平滑,霍尔特温特斯
  • 时间序列的假设检验:单位根、协整等
  • 时间序列分析的描述性统计和过程模型

9.生存分析:

比例危险回归(cox模型)

幸存者函数估计(kaplan-meier)

累积关联函数估计

10.多变量:

  • 缺失数据的主成分分析
  • 旋转因子分析
  • 曼诺瓦
  • 典型相关

11.非参数统计:单变量和多变量核密度估计

12.数据集:用于示例和测试的数据集

13.统计学:广泛的统计测试

  • 诊断和规格测试
  • 拟合优度和正态性检验
  • 多重测试功能
  • 各种附加统计测试

14.小鼠插补,顺序统计回归和高斯插补

15.中介分析

16.图形包括用于可视化分析数据和模型结果的绘图功能

17.输入/输出

  • 用于读取stata.dta文件的工具,但pandas有一个更新的版本
  • 表输出为ascii、latex和html

18.沙箱:statsmodels包含一个沙箱文件夹,其中包含 未被视为“生产准备就绪”的开发和测试。

  • 广义矩量法(gmm)估计量
  • 核回归
  • scipy.stats.distributions的各种扩展
  • 面板数据模型
  • 信息论测度

4、获取和安装

pip3 install --upgrade statsmodel -i https://pypi.tsinghua.edu.cn/simple

以上就是python数学建模库statsmodels统计回归简介初识的详细内容,更多关于数学建模库statsmodels统计回归的资料请关注其它相关文章!