欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Weak15 Sklearn Homework

程序员文章站 2022-03-11 20:00:22
...

Weak15 Sklearn Homework
代码:

import sklearn
from sklearn import datasets
from sklearn import cross_validation
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier
from sklearn import metrics
dataset = datasets.make_classification(n_samples=1000,n_features=10)
data = dataset[0]
target = dataset[1]
kf = cross_validation.KFold(len(data),n_folds=10,shuffle=True)

先import一堆库,以及生成数据集和kf

GaussianNB:

i = 1
for train_index,test_index in kf:
    x_train,y_train = data[train_index],target[train_index]
    x_test,y_test = data[test_index],target[test_index]
    clf = GaussianNB()
    clf.fit(x_train,y_train)
    pred = clf.predict(x_test)
    print("Group:",i)
    i += 1
    print("Accuracy:", metrics.accuracy_score(y_test, pred))
    print("F1-score:", metrics.f1_score(y_test, pred))
    print("AUC ROC:",metrics.roc_auc_score(y_test, pred))

Weak15 Sklearn Homework
Weak15 Sklearn Homework

SVC:


for c in [1e-02, 1e-01, 1e00, 1e01, 1e02]:
    i = 1
    for train_index,test_index in kf:
        x_train,y_train = data[train_index],target[train_index]
        x_test,y_test = data[test_index],target[test_index]
        clf = SVC(C=c,kernel='rbf',gamma=0.1)
        clf.fit(x_train,y_train)
        pred = clf.predict(x_test)
        print("Group:",i)
        i += 1
        print("C = ",c)
        print("Accuracy:", metrics.accuracy_score(y_test, pred))
        print("F1-score:", metrics.f1_score(y_test, pred))
        print("AUC ROC:",metrics.roc_auc_score(y_test, pred))

截图只截每个C的第一组。
Weak15 Sklearn Homework
Weak15 Sklearn Homework
Weak15 Sklearn Homework
Weak15 Sklearn Homework
Weak15 Sklearn Homework
RandomForestClassifier:

for n in [10, 100, 1000]:
    i = 1
    for train_index,test_index in kf:
        x_train,y_train = data[train_index],target[train_index]
        x_test,y_test = data[test_index],target[test_index]
        clf = RandomForestClassifier(n_estimators=n)
        clf.fit(x_train,y_train)
        pred = clf.predict(x_test)
        print("Group:",i)
        i += 1
        print("n_estimators = ",n)
        print("Accuracy:", metrics.accuracy_score(y_test, pred))
        print("F1-score:", metrics.f1_score(y_test, pred))
        print("AUC ROC:",metrics.roc_auc_score(y_test, pred))

截图只截每个n_estimators的第一组。
Weak15 Sklearn Homework
Weak15 Sklearn Homework
Weak15 Sklearn Homework
分析:
实验使用相同的数据集,从结果可知随机森林算法的精确度比其他两种算法要高。SVC需要选择适合的参数才能得到一个比较高的精确度。朴素贝叶斯算法比适合参数的SVM略差,但是比其余参数的SVC略好。