数据结构——二叉树的遍历
“树”是一种重要的数据结构,本文浅谈二叉树的遍历问题,采用C语言描述。
一、二叉树基础
1)定义:有且仅有一个根结点,除根节点外,每个结点只有一个父结点,最多含有两个子节点,子节点有左右之分。
2)存储结构
二叉树的存储结构可以采用顺序存储,也可以采用链式存储,其中链式存储更加灵活。
在链式存储结构中,与线性链表类似,二叉树的每个结点采用结构体表示,结构体包含三个域:数据域、左指针、右指针。
二叉树在C语言中的定义如下:
-
struct BiTreeNode{
-
int c;
-
struct BiTreeNode *left;
-
struct BiTreeNode *right;
-
};
二、二叉树的遍历
“遍历”是二叉树各种操作的基础。二叉树是一种非线性结构,其遍历不像线性链表那样容易,无法通过简单的循环实现。
二叉树是一种树形结构,遍历就是要让树中的所有节点被且仅被访问一次,即按一定规律排列成一个线性队列。二叉(子)树是一种递归定义的结构,包含三个部分:根结点(N)、左子树(L)、右子树(R)。根据这三个部分的访问次序对二叉树的遍历进行分类,总共有6种遍历方案:NLR、LNR、LRN、NRL、RNL和LNR。研究二叉树的遍历就是研究这6种具体的遍历方案,显然根据简单的对称性,左子树和右子树的遍历可互换,即NLR与NRL、LNR与RNL、LRN与RLN,分别相类似,因而只需研究NLR、LNR和LRN三种即可,分别称为“先序遍历”、“中序遍历”和“后序遍历”。
二叉树遍历通常借用“栈”这种数据结构实现,有两种方式:递归方式及非递归方式。
在递归方式中,栈是由操作系统维护的,用户不必关心栈的细节操作,用户只需关心“访问顺序”即可。因而,采用递归方式实现二叉树的遍历比较容易理解,算法简单,容易实现。
递归方式实现二叉树遍历的C语言代码如下:
-
//先序遍历--递归
-
int traverseBiTreePreOrder(BiTreeNode *ptree,int (*visit)(int))
-
{
-
if(ptree)
-
{
-
if(visit(ptree->c))
-
if(traverseBiTreePreOrder(ptree->left,visit))
-
if(traverseBiTreePreOrder(ptree->right,visit))
-
return 1; //正常返回
-
return 0; //错误返回
-
}else return 1; //正常返回
-
}
-
//中序遍历--递归
-
int traverseBiTreeInOrder(BiTreeNode *ptree,int (*visit)(int))
-
{
-
if(ptree)
-
{
-
if(traverseBiTreeInOrder(ptree->left,visit))
-
if(visit(ptree->c))
-
if(traverseBiTreeInOrder(ptree->right,visit))
-
return 1;
-
return 0;
-
}else return 1;
-
}
-
//后序遍历--递归
-
int traverseBiTreePostOrder(BiTreeNode *ptree,int (*visit)(int))
-
{
-
if(ptree)
-
{
-
if(traverseBiTreePostOrder(ptree->left,visit))
-
if(traverseBiTreePostOrder(ptree->right,visit))
-
if(visit(ptree->c))
-
return 1;
-
return 0;
-
}else return 1;
-
}
以上代码中,visit为一函数指针,用于传递二叉树中对结点的操作方式,其原型为:int (*visit)(char)。
大家知道,函数在调用时,会自动进行栈的push,调用返回时,则会自动进行栈的pop。函数递归调用无非是对一个栈进行返回的push与pop,既然递归方式可以实现二叉树的遍历,那么借用“栈”采用非递归方式,也能实现遍历。但是,这时的栈操作(push、pop等)是由用户进行的,因而实现起来会复杂一些,而且也不容易理解,但有助于我们对树结构的遍历有一个深刻、清晰的理解。
在讨论非递归遍历之前,我们先定义栈及各种需要用到的栈操作:
-
//栈的定义,栈的数据是“树结点的指针”
-
struct Stack{
-
BiTreeNode **top;
-
BiTreeNode **base;
-
int size;
-
};
-
#define STACK_INIT_SIZE 100
-
#define STACK_INC_SIZE 10
-
//初始化空栈,预分配存储空间
-
Stack* initStack()
-
{
-
Stack *qs=NULL;
-
qs=(Stack *)malloc(sizeof(Stack));
-
qs->base=(BiTreeNode **)calloc(STACK_INIT_SIZE,sizeof(BiTreeNode *));
-
qs->top=qs->base;
-
qs->size=STACK_INIT_SIZE;
-
return qs;
-
}
-
//取栈顶数据
-
BiTreeNode* getTop(Stack *qs)
-
{
-
BiTreeNode *ptree=NULL;
-
if(qs->top==qs->base)
-
return NULL;
-
ptree=*(qs->top-1);
-
return ptree;
-
}
-
//入栈操作
-
int push(Stack *qs,BiTreeNode *ptree)
-
{
-
if(qs->top-qs->base>=qs->size)
-
{
-
qs->base=(BiTreeNode **)realloc(qs->base,(qs->size+STACK_INC_SIZE)*sizeof(BiTreeNode *));
-
qs->top=qs->base+qs->size;
-
qs->size+=STACK_INC_SIZE;
-
}
-
*qs->top++=ptree;
-
return 1;
-
}
-
//出栈操作
-
BiTreeNode* pop(Stack *qs)
-
{
-
if(qs->top==qs->base)
-
return NULL;
-
return *--qs->top;
-
}
-
//判断栈是否为空
-
int isEmpty(Stack *qs)
-
{
-
return qs->top==qs->base;
-
}
首先考虑非递归先序遍历(NLR)。在遍历某一个二叉(子)树时,以一当前指针记录当前要处理的二叉(左子)树,以一个栈保存当前树之后处理的右子树。首先访问当前树的根结点数据,接下来应该依次遍历其左子树和右子树,然而程序的控制流只能处理其一,所以考虑将右子树的根保存在栈里面,当前指针则指向需先处理的左子树,为下次循环做准备;若当前指针指向的树为空,说明当前树为空树,不需要做任何处理,直接弹出栈顶的子树,为下次循环做准备。相应的C语言代码如下:
-
//先序遍历--非递归
-
int traverseBiTreePreOrder2(BiTreeNode *ptree,int (*visit)(int))
-
{
-
Stack *qs=NULL;
-
BiTreeNode *pt=NULL;
-
qs=initStack();
-
pt=ptree;
-
while(pt || !isEmpty(qs))
-
{
-
if(pt)
-
{
-
if(!visit(pt->c)) return 0; //错误返回
-
push(qs,pt->right);
-
pt=pt->left;
-
}
-
else pt=pop(qs);
-
}
-
return 1; //正常返回
-
}
相对于非递归先序遍历,非递归的中序/后序遍历稍复杂一点。
对于非递归中序遍历,若当前树不为空树,则访问其根结点之前应先访问其左子树,因而先将当前根节点入栈,然后考虑其左子树,不断将非空的根节点入栈,直到左子树为一空树;当左子树为空时,不需要做任何处理,弹出并访问栈顶结点,然后指向其右子树,为下次循环做准备。
-
//中序遍历--非递归
-
int traverseBiTreeInOrder2(BiTreeNode *ptree,int (*visit)(int))
-
{
-
Stack *qs=NULL;
-
BiTreeNode *pt=NULL;
-
qs=initStack();
-
pt=ptree;
-
while(pt || !isEmpty(qs))
-
{
-
if(pt)
-
{
-
push(qs,pt);
-
pt=pt->left;
-
}
-
else
-
{
-
pt=pop(qs);
-
if(!visit(pt->c)) return 0;
-
pt=pt->right;
-
}
-
}
-
return 1;
-
}
-
//中序遍历--非递归--另一种实现方式
-
int traverseBiTreeInOrder3(BiTreeNode *ptree,int (*visit)(int))
-
{
-
Stack *qs=NULL;
-
BiTreeNode *pt=NULL;
-
qs=initStack();
-
push(qs,ptree);
-
while(!isEmpty(qs))
-
{
-
while(pt=getTop(qs)) push(qs,pt->left);
-
pt=pop(qs);
-
if(!isEmpty(qs))
-
{
-
pt=pop(qs);
-
if(!visit(pt->c)) return 0;
-
push(qs,pt->right);
-
}
-
}
-
return 1;
-
}
最后谈谈非递归后序遍历。由于在访问当前树的根结点时,应先访问其左、右子树,因而先将根结点入栈,接着将右子树也入栈,然后考虑左子树,重复这一过程直到某一左子树为空;如果当前考虑的子树为空,若栈顶不为空,说明第二栈顶对应的树的右子树未处理,则弹出栈顶,下次循环处理,并将一空指针入栈以表示其另一子树已做处理;若栈顶也为空树,说明第二栈顶对应的树的左右子树或者为空,或者均已做处理,直接访问第二栈顶的结点,访问完结点后,若栈仍为非空,说明整棵树尚未遍历完,则弹出栈顶,并入栈一空指针表示第二栈顶的子树之一已被处理。
-
//后序遍历--非递归
-
int traverseBiTreePostOrder2(BiTreeNode *ptree,int (*visit)(int))
-
{
-
Stack *qs=NULL;
-
BiTreeNode *pt=NULL;
-
qs=initStack();
-
pt=ptree;
-
while(1) //循环条件恒“真”
-
{
-
if(pt)
-
{
-
push(qs,pt);
-
push(qs,pt->right);
-
pt=pt->left;
-
}
-
else if(!pt)
-
{
-
pt=pop(qs);
-
if(!pt)
-
{
-
pt=pop(qs);
-
if(!visit(pt->c)) return 0;
-
if(isEmpty(qs)) return 1;
-
pt=pop(qs);
-
}
-
push(qs,NULL);
-
}
-
}
-
return 1;
-
}
三、二叉树的创建
谈完二叉树的遍历之后,再来谈谈二叉树的创建,这里所说的创建是指从控制台依次(先/中/后序)输入二叉树的各个结点元素(此处为字符),用“空格”表示空树。
由于控制台输入是保存在输入缓冲区内,因此遍历的“顺序”就反映在读取输入字符的次序上。
以下是递归方式实现的先序创建二叉树的C代码。
-
//创建二叉树--先序输入--递归
-
BiTreeNode* createBiTreePreOrder()
-
{
-
BiTreeNode *ptree=NULL;
-
char ch;
-
ch=getchar();
-
if(ch==' ')
-
ptree=NULL;
-
else
-
{
-
ptree=(struct BiTreeNode *)malloc(sizeof(BiTreeNode));
-
ptree->c=ch;
-
ptree->left=createBiTreePreOrder();
-
ptree->right=createBiTreePreOrder();
-
}
-
return ptree;
-
}
对于空树,函数直接返回即可;对于非空树,先读取字符并赋值给当前根结点,然后创建左子树,最后创建右子树。因此,要先知道当前要创建的树是否为空,才能做相应处理,“先序”遍历方式很好地符合了这一点。但是中序或后序就不一样了,更重要的是,中序或后序方式输入的字符序列无法唯一确定一个二叉树。我还没有找到中序/后序实现二叉树的创建(控制台输入)的类似简单的方法,希望各位同仁网友不吝赐教哈!
四、运行及结果
采用如下的二叉树进行测试,首先先序输入创建二叉树,然后依次调用各个遍历函数。
先序输入的格式:ABC ^ ^ D E ^ G ^ ^ F ^ ^ ^ (其中, ^ 表示空格字符)
遍历操作采用标准I/O库中的putchar函数,其原型为:int putchar(int);
各种形式遍历输出的结果为:
先序:ABCDEGF
中序:CBEGDFA
后序:CGEFDBA
测试程序的主函数如下:
-
int main(int argc, char* argv[])
-
{
-
BiTreeNode *proot=NULL;
-
printf("InOrder input chars to create a BiTree: ");
-
proot=createBiTreePreOrder(); //输入(ABC DE G F )
-
printf("PreOrder Output the BiTree recursively: ");
-
traverseBiTreePreOrder(proot,putchar);
-
printf("\n");
-
printf("PreOrder Output the BiTree non-recursively: ");
-
traverseBiTreePreOrder2(proot,putchar);
-
printf("\n");
-
printf("InOrder Output the BiTree recursively: ");
-
traverseBiTreeInOrder(proot,putchar);
-
printf("\n");
-
printf("InOrder Output the BiTree non-recursively(1): ");
-
traverseBiTreeInOrder2(proot,putchar);
-
printf("\n");
-
printf("InOrder Output the BiTree non-recursively(2): ");
-
traverseBiTreeInOrder3(proot,putchar);
-
printf("\n");
-
printf("PostOrder Output the BiTree non-recursively: ");
-
traverseBiTreePostOrder(proot,putchar);
-
printf("\n");
-
printf("PostOrder Output the BiTree recursively: ");
-
traverseBiTreePostOrder2(proot,putchar);
-
printf("\n");
-
return 0;
-
}
转自:https://blog.csdn.net/zhaoxianyong/article/details/7165386#commentBox
对于visit函数指针,可以这样简单的理解。visit是一个指针变量,它指向一个函数,这个函数的返回类型是int,这个函数的形参只有一个,也是int。那么怎么样表示这样一个指针才能让编译器知道visit是一个函数指针呢(即指向一个函数)?C标准给我们定了一个形式,就是 int (*visit) (int); 前一个int 表示返回类型,后一个int表示函数形参类型。 说到这里,我想起了之前我对此的一个误解。我之前以为这个被指向的函数肯定是这样的:int visit(int);visit就是函数名。其实不是这样的,这个被指向的函数可以是这样的,int hanshu(int)。 另外,这个函数指针也不一定非得叫visit,也可以定义为 int (*v)(int),v照样指向返回类型是int,形参类型是int的一个函数。 这是我当初看到visit的一些误区,我发现把这些误区弄清楚了,我就搞清楚了visit到底是什么了,希望对你有帮助。