机器学习笔记--机器学习实战CART算法错误
程序员文章站
2022-06-18 10:54:19
...
分类与回归树(Classification And Regression Tree,CART)生成过程中:
对回归树用平方误差最小化准则;
对分类树用基尼系数最小化准则.
使用<机器学习实战>第九章中介绍CART算法的代码,用平方误差最小化准则构造回归树,发现代码部分有问题:
问题处:
更改后:
# !/usr/bin/env python
# coding:utf-8
from numpy import *
# 加载数据
def loadDataSet(fileName):
dataMat = []
fr = open(fileName)
for line in fr.readlines():
curLine = line.strip().split('\t')
fltLine = map(float,curLine)
dataMat.append(fltLine)
return dataMat
# 生成叶节点
def regLeaf(dataSet):
return mean(dataSet[:,-1])
# 误差估计函数(平方误差)
def regErr(dataSet):
return var(dataSet[:,-1]) * shape(dataSet)[0]
# (数据集合,待切分的特征,该特征的某个值)
# 将数据切分得到两个子集并返回
def binSplitDataSet(dataSet, feature, value):
# nonzero返回非零元素的索引
mat0 = dataSet[nonzero(dataSet[:,feature]>value)[0], :]
mat1 = dataSet[nonzero(dataSet[:,feature]<=value)[0], :]
return mat0, mat1
# 树构建函数
# (数据集,建立叶节点函数,误差计算函数)
def createTree(dataSet, leafType=regLeaf, errType=regErr, ops=(1,4)):
# # 获得当前的(最佳切分特征,阈值)
feat, val = chooseBestSplit(dataSet, leafType, errType, ops)
if feat == None:
return val
retTree = {}
# 待切分的特征
retTree['spInd'] = feat
# 待切分的特征值
retTree['spVal'] = val
# 将数据集分成两份,继续递归
lSet, rSet = binSplitDataSet(dataSet, feat, val)
# 左子树
retTree['left'] = createTree(lSet, leafType, errType, ops)
# 右子数
retTree['right'] = createTree(rSet, leafType, errType, ops)
return retTree
# 回归树的切分函数,找到数据集切分的最佳位置
# (最佳切分特征,阈值)
def chooseBestSplit(dataSet, leafType=regLeaf, errType=regErr, ops=(1,4)):
# 容许的误差下降值
tolS = ops[0]
# 切分的最少样本数
tolN = ops[1]
# 若所有值相等则退出
if len(set(dataSet[:,-1].T.tolist()[0])) == 1:
return None, leafType(dataSet)
m, n = shape(dataSet)
S = errType(dataSet)
# 当前误差bestS的初始值设为无穷大
bestS = inf
bestIndex = 0
bestValue = 0
for featIndex in range(n-1):
# 通过集合set去重获得全部的可用特征值
for splitVal in set(dataSet[:, featIndex].T.tolist()[0]):
# 将数据切分得到两个子集
mat0, mat1 = binSplitDataSet(dataSet, featIndex, splitVal)
# 若切分后的任一个子集的样本数小于设置的最少样本数
if (shape(mat0)[0] < tolN) or (shape(mat1)[0] < tolN):
continue
# 计算切分后的误差
newS = errType(mat0) + errType(mat1)
# 若切分后的误差小于当前误差
if newS < bestS:
# 则将当前特征设定为最佳切分特征
bestIndex = featIndex
# 则将当前阈值设定为最佳切分阈值
bestValue = splitVal
# 更新当前误差
bestS = newS
# 如果误差减小不大(小于容许的误差下降值)则退出
if (S - bestS) < tolS:
return None, leafType(dataSet)
mat0, mat1 = binSplitDataSet(dataSet, bestIndex, bestValue)
# 如果切分的数据很小(小于切分的最少样本数)则退出
if (shape(mat0)[0] < tolN) or (shape(mat1)[0] < tolN):
return None, leafType(dataSet)
return bestIndex,bestValue
if __name__ == '__main__':
myDat = loadDataSet("ex0.txt")
myMat = mat(myDat)
# 获得最佳切分特征和阈值
print chooseBestSplit(myMat)
# 获得回归树
print createTree(myMat)
输出:
(1, 0.39435)
{'spInd': 1, 'spVal': 0.39435, 'right': {'spInd': 1, 'spVal': 0.197834, 'right': -0.023838155555555553, 'left': 1.0289583666666666}, 'left': {'spInd': 1, 'spVal': 0.582002, 'right': 1.980035071428571, 'left': {'spInd': 1, 'spVal': 0.797583, 'right': 2.9836209534883724, 'left': 3.9871631999999999}}}
文件ex00.txt中的简单数据集查看:
if __name__ == '__main__':
myDat = loadDataSet("ex00.txt")
myMat = mat(myDat)
plt.figure()
plt.scatter(myMat[:,0],myMat[:,1],s=15, c='b')
plt.show()
可以看到数据比较明显的在两个区域聚集:
将文件ex00.txt中的数据的y轴放大100倍,得到的数据放入ex2.txt中:
此时数据仍保持原来的聚集状态.
但再次构建决策树进行分类时:
if __name__ == '__main__':
myDat2 = loadDataSet("ex2.txt")
myMat2 = mat(myDat2)
print createTree(myMat2, ops=(10000,4))
输出:
{'spInd': 0, 'spVal': 0.499171, 'right': {'spInd': 0, 'spVal': 0.457563, 'right': {'spInd': 0, 'spVal': 0.126833, 'right': {'spInd': 0, 'spVal': 0.084661, 'right': {'spInd': 0, 'spVal': 0.044737, 'right': 4.0916259999999998, 'left': -2.5443927142857148}, 'left': 6.5098432857142843}, 'left': {'spInd': 0, 'spVal': 0.373501, 'right': {'spInd': 0, 'spVal': 0.335182, 'right': {'spInd': 0, 'spVal': 0.324274, 'right': {'spInd': 0, 'spVal': 0.297107, 'right': {'spInd': 0, 'spVal': 0.166765, 'right': {'spInd': 0, 'spVal': 0.156067, 'right': -6.2479000000000013, 'left': -12.107972500000001}, 'left': {'spInd': 0, 'spVal': 0.202161, 'right': 3.4496025000000001, 'left': {'spInd': 0, 'spVal': 0.217214, 'right': -11.822278500000001, 'left': {'spInd': 0, 'spVal': 0.228473, 'right': 6.770429, 'left': {'spInd': 0, 'spVal': 0.25807, 'right': -13.070501, 'left': 0.40377471428571476}}}}}, 'left': -19.994155200000002}, 'left': 15.059290750000001}, 'left': {'spInd': 0, 'spVal': 0.350725, 'right': -22.693879600000002, 'left': -15.085111749999999}}, 'left': {'spInd': 0, 'spVal': 0.437652, 'right': {'spInd': 0, 'spVal': 0.412516, 'right': {'spInd': 0, 'spVal': 0.385021, 'right': 3.6584772500000016, 'left': -0.89235549999999952}, 'left': 14.38417875}, 'left': -12.558604833333334}}}, 'left': {'spInd': 0, 'spVal': 0.467383, 'right': 3.4331330000000007, 'left': 12.50675925}}, 'left': {'spInd': 0, 'spVal': 0.729397, 'right': {'spInd': 0, 'spVal': 0.640515, 'right': {'spInd': 0, 'spVal': 0.613004, 'right': {'spInd': 0, 'spVal': 0.582311, 'right': {'spInd': 0, 'spVal': 0.553797, 'right': {'spInd': 0, 'spVal': 0.51915, 'right': 101.73699325000001, 'left': {'spInd': 0, 'spVal': 0.543843, 'right': 110.979946, 'left': 109.38961049999999}}, 'left': 97.200180249999988}, 'left': 123.2101316}, 'left': 93.673449714285724}, 'left': {'spInd': 0, 'spVal': 0.666452, 'right': 114.15162428571431, 'left': {'spInd': 0, 'spVal': 0.706961, 'right': {'spInd': 0, 'spVal': 0.698472, 'right': 108.92921799999999, 'left': 104.82495374999999}, 'left': 114.554706}}}, 'left': {'spInd': 0, 'spVal': 0.952833, 'right': {'spInd': 0, 'spVal': 0.759504, 'right': 78.085643250000004, 'left': {'spInd': 0, 'spVal': 0.790312, 'right': 102.35780185714285, 'left': {'spInd': 0, 'spVal': 0.833026, 'right': {'spInd': 0, 'spVal': 0.811602, 'right': 88.784498800000009, 'left': 81.110151999999999}, 'left': {'spInd': 0, 'spVal': 0.944221, 'right': {'spInd': 0, 'spVal': 0.85497, 'right': 95.275843166666661, 'left': {'spInd': 0, 'spVal': 0.910975, 'right': {'spInd': 0, 'spVal': 0.892999, 'right': {'spInd': 0, 'spVal': 0.872883, 'right': 102.25234449999999, 'left': 95.181792999999999}, 'left': 104.82540899999999}, 'left': 96.452866999999998}}, 'left': 87.310387500000004}}}}, 'left': {'spInd': 0, 'spVal': 0.958512, 'right': 112.42895575000001, 'left': 105.24862350000001}}}}
可以看到此时构造的树会变得非常庞大,拥有很多叶节点.原因是停止条件tolS对误差数量级过于敏感.
此时,可以通过不断调整停止条件得到仅有两个节点的树.
if __name__ == '__main__':
myDat2 = loadDataSet("ex2.txt")
myMat2 = mat(myDat2)
print createTree(myMat2, ops=(10000,4))
输出:
{'spInd': 0, 'spVal': 0.499171, 'right': -2.6377193297872341, 'left': 101.35815937735848}
文件ex0.txt中的测试数据集:
if __name__ == '__main__':
# 读取测试数据
myDat = loadDataSet("ex0.txt")
myMat = mat(myDat)
print createTree(myMat)
plt.figure()
plt.scatter(myMat[:,1],myMat[:,2],s=15, c='b')
plt.show()
利用GUI对回归树调优
# !/usr/bin/env python
# coding:utf-8
from numpy import *
# 加载数据
def loadDataSet(fileName):
dataMat = []
fr = open(fileName)
for line in fr.readlines():
curLine = line.strip().split('\t')
fltLine = map(float,curLine)
dataMat.append(fltLine)
return dataMat
# 生成叶节点
def regLeaf(dataSet):
return mean(dataSet[:,-1])
# 误差估计函数(平方误差)
def regErr(dataSet):
return var(dataSet[:,-1]) * shape(dataSet)[0]
# (数据集合,待切分的特征,该特征的某个值)
# 将数据切分得到两个子集并返回
def binSplitDataSet(dataSet, feature, value):
# nonzero返回非零元素的索引
mat0 = dataSet[nonzero(dataSet[:,feature]>value)[0], :]
mat1 = dataSet[nonzero(dataSet[:,feature]<=value)[0], :]
return mat0, mat1
# 树构建函数
# (数据集,建立叶节点函数,误差计算函数)
def createTree(dataSet, leafType=regLeaf, errType=regErr, ops=(1,4)):
# # 获得当前的(最佳切分特征,阈值)
feat, val = chooseBestSplit(dataSet, leafType, errType, ops)
if feat == None:
return val
retTree = {}
# 待切分的特征
retTree['spInd'] = feat
# 待切分的特征值
retTree['spVal'] = val
# 将数据集分成两份,继续递归
lSet, rSet = binSplitDataSet(dataSet, feat, val)
# 左子树
retTree['left'] = createTree(lSet, leafType, errType, ops)
# 右子数
retTree['right'] = createTree(rSet, leafType, errType, ops)
return retTree
# 回归树的切分函数,找到数据集切分的最佳位置
# (最佳切分特征,阈值)
def chooseBestSplit(dataSet, leafType=regLeaf, errType=regErr, ops=(1,4)):
# 容许的误差下降值
tolS = ops[0]
# 切分的最少样本数
tolN = ops[1]
# 若所有值相等则退出
if len(set(dataSet[:,-1].T.tolist()[0])) == 1:
return None, leafType(dataSet)
m, n = shape(dataSet)
S = errType(dataSet)
# 当前误差bestS的初始值设为无穷大
bestS = inf
bestIndex = 0
bestValue = 0
for featIndex in range(n-1):
# 通过集合set去重获得全部的可用特征值
for splitVal in set(dataSet[:, featIndex].T.tolist()[0]):
# 将数据切分得到两个子集
mat0, mat1 = binSplitDataSet(dataSet, featIndex, splitVal)
# 若切分后的任一个子集的样本数小于设置的最少样本数
if (shape(mat0)[0] < tolN) or (shape(mat1)[0] < tolN):
continue
# 计算切分后的误差
newS = errType(mat0) + errType(mat1)
# 若切分后的误差小于当前误差
if newS < bestS:
# 则将当前特征设定为最佳切分特征
bestIndex = featIndex
# 则将当前阈值设定为最佳切分阈值
bestValue = splitVal
# 更新当前误差
bestS = newS
# 如果误差减小不大(小于容许的误差下降值)则退出
if (S - bestS) < tolS:
return None, leafType(dataSet)
mat0, mat1 = binSplitDataSet(dataSet, bestIndex, bestValue)
# 如果切分的数据很小(小于切分的最少样本数)则退出
if (shape(mat0)[0] < tolN) or (shape(mat1)[0] < tolN):
return None, leafType(dataSet)
return bestIndex,bestValue
def isTree(obj):
return (type(obj).__name__ == 'dict')
def getMean(tree):
if isTree(tree['right']): tree['right'] = getMean(tree['right'])
if isTree(tree['left']): tree['left'] = getMean(tree['left'])
return (tree['left'] + tree['right']) / 2.0
def prune(tree, testData):
if shape(testData)[0] == 0: return getMean(tree)
# 如果不是树,则修剪它们
if (isTree(tree['right']) or isTree(tree['left'])):
lSet, rSet = binSplitDataSet(testData, tree['spInd'], tree['spVal'])
if isTree(tree['left']): tree['left'] = prune(tree['left'], lSet)
if isTree(tree['right']): tree['right'] = prune(tree['right'], rSet)
# 如果都是叶节点,判断是否可以合并
if not isTree(tree['left']) and not isTree(tree['right']):
lSet, rSet = binSplitDataSet(testData, tree['spInd'], tree['spVal'])
errorNoMerge = sum(power(lSet[:, -1] - tree['left'], 2)) + \
sum(power(rSet[:, -1] - tree['right'], 2))
treeMean = (tree['left'] + tree['right']) / 2.0
errorMerge = sum(power(testData[:, -1] - treeMean, 2))
if errorMerge < errorNoMerge:
# print "merging"
return treeMean
else:
return tree
else:
return tree
def linearSolve(dataSet):
m,n = shape(dataSet)
# 创建数据副本
X = mat(ones((m,n)))
Y = mat(ones((m,1)))
X[:,1:n] = dataSet[:,0:n-1]
# 去掉Y
Y = dataSet[:,-1]
xTx = X.T*X
if linalg.det(xTx) == 0.0:
raise NameError('This matrix is singular, cannot do inverse,\n\
try increasing the second value of ops')
ws = xTx.I * (X.T * Y)
return ws,X,Y
# 创建线性模型并返回系数
def modelLeaf(dataSet):
ws,X,Y = linearSolve(dataSet)
return ws
def modelErr(dataSet):
ws,X,Y = linearSolve(dataSet)
yHat = X * ws
return sum(power(Y - yHat,2))
def regTreeEval(model, inDat):
return float(model)
def modelTreeEval(model, inDat):
n = shape(inDat)[1]
X = mat(ones((1, n + 1)))
X[:, 1:n + 1] = inDat
return float(X * model)
def treeForeCast(tree, inData, modelEval=regTreeEval):
if not isTree(tree): return modelEval(tree, inData)
if inData[tree['spInd']] > tree['spVal']:
if isTree(tree['left']):
return treeForeCast(tree['left'], inData, modelEval)
else:
return modelEval(tree['left'], inData)
else:
if isTree(tree['right']):
return treeForeCast(tree['right'], inData, modelEval)
else:
return modelEval(tree['right'], inData)
def createForeCast(tree, testData, modelEval=regTreeEval):
m = len(testData)
yHat = mat(zeros((m, 1)))
for i in range(m):
yHat[i, 0] = treeForeCast(tree, mat(testData[i]), modelEval)
return yHat
from Tkinter import *
import matplotlib
matplotlib.use('TkAgg')
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg
from matplotlib.figure import Figure
def reDraw(tolS,tolN):
reDraw.f.clf()
reDraw.a = reDraw.f.add_subplot(111)
if chkBtnVar.get():
if tolN < 2: tolN = 2
myTree=createTree(reDraw.rawDat, modelLeaf,modelErr, (tolS,tolN))
yHat = createForeCast(myTree, reDraw.testDat, modelTreeEval)
else:
myTree = createTree(reDraw.rawDat, ops=(tolS,tolN))
yHat = createForeCast(myTree, reDraw.testDat)
reDraw.a.scatter(reDraw.rawDat[:,0], reDraw.rawDat[:,1], s=5)
reDraw.a.plot(reDraw.testDat, yHat, linewidth=2.0)
reDraw.canvas.show()
def getInputs():
try:
tolN = int(tolNentry.get())
except:
tolN = 10
print "enter Integer for tolN"
tolNentry.delete(0, END)
tolNentry.insert(0, '10')
try:
tolS = float(tolSentry.get())
except:
tolS = 1.0
print "enter Float for tolS"
tolSentry.delete(0, END)
tolSentry.insert(0, '1.0')
return tolN, tolS
def drawNewTree():
tolN, tolS = getInputs()
reDraw(tolS, tolN)
import matplotlib.pyplot as plt
if __name__ == '__main__':
root = Tk()
reDraw.f = Figure(figsize=(5, 4), dpi=100) # create canvas
reDraw.canvas = FigureCanvasTkAgg(reDraw.f, master=root)
reDraw.canvas.show()
reDraw.canvas.get_tk_widget().grid(row=0, columnspan=3)
Label(root, text="tolN").grid(row=1, column=0)
tolNentry = Entry(root)
tolNentry.grid(row=1, column=1)
tolNentry.insert(0, '10')
Label(root, text="tolS").grid(row=2, column=0)
tolSentry = Entry(root)
tolSentry.grid(row=2, column=1)
tolSentry.insert(0, '1.0')
Button(root, text="ReDraw", command=drawNewTree).grid(row=1, column=2, rowspan=3)
chkBtnVar = IntVar()
chkBtn = Checkbutton(root, text="Model Tree", variable=chkBtnVar)
chkBtn.grid(row=3, column=0, columnspan=2)
reDraw.rawDat = mat(loadDataSet('sine.txt'))
reDraw.testDat = arange(min(reDraw.rawDat[:, 0]), max(reDraw.rawDat[:, 0]), 0.01)
reDraw(1.0, 10)
root.mainloop()
可得如图效果:
上一篇: BIOS设置USB启动方法使用教程