欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

剑指offer 54:链表中环的入口节点

程序员文章站 2022-06-17 17:20:31
...

题目描述

给一个链表,若其中包含环,请找出该链表的环的入口结点,否则,输出null。

思路:
设置快慢指针,都从链表头出发,快指针每次走两步,慢指针一次走一步,假如有环,一定相遇于环中某点(结论1)。接着让两个指针分别从相遇点和链表头出发,两者都改为每次走一步,最终相遇于环入口(结论2)。
以下是两个结论证明:
两个结论:
1、设置快慢指针,假如有环,他们最后一定相遇。
2、两个指针分别从链表头和相遇点继续出发,每次走一步,最后一定相遇与环入口。
证明结论1:
设置快慢指针fast和low,fast每次走两步,low每次走一步。假如有环,两者一定会相遇(因为low一旦进环,可看作fast在后面追赶low的过程,每次两者都接近一步,最后一定能追上)。
证明结论2:
设: 链表头到环入口长度为–a 环入口到相遇点长度为–b 相遇点到环入口长度为–c
剑指offer 54:链表中环的入口节点
则:相遇时
快指针路程=a+(b+c)k+b ,k>=1 其中b+c为环的长度,k为绕环的圈数(k>=1,即最少一圈,不能是0圈,不然和慢指针走的一样长,矛盾)。
慢指针路程=a+b
快指针走的路程是慢指针的两倍,所以:
*(a+b)2=a+(b+c)k+b 化简可得:
a=(k-1)(b+c)+c 这个式子的意思是: 链表头到环入口的距离=相遇点到环入口的距离+(k-1)圈环长度。其中k>=1,所以k-1>=0圈。所以两个指针分别从链表头和相遇点出发,最后一定相遇于环入口。

/*
 public class ListNode {
    int val;
    ListNode next = null;
    ListNode(int val) {
        this.val = val;
    }
}
*/
public class Solution {
    public ListNode EntryNodeOfLoop(ListNode pHead)
    {
        ListNode fast=pHead;
        ListNode low=pHead;
        while(fast!=null&&fast.next!=null){
            fast=fast.next.next;
            low=low.next;
            if(fast==low)
                break;
        }
        if(fast==null||fast.next==null){
            return null;
        }
        low=pHead;
        while(fast!=low){
            fast=fast.next;
            low=low.next;
        }
        return low;
    }
}
相关标签: java算法