欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

各种排序算法及其实现总结

程序员文章站 2022-06-17 14:41:51
...

各种排序算法及其实现总结
排序算法总结

1.插入排序

一般来说,插入排序 都采用in-place在数组上实现。具体算法描述如下:
从第一个元素开始,该元素可以认为已经被排序
取出下一个元素,在已经排序的元素序列中从后向前扫描
如果该元素(已排序)大于新元素,将该元素移到下一位置
重复步骤3,直到找到已排序的元素小于或者等于新元素的位置
将新元素插入到该位置中
重复步骤2

如果比较操作 的代价比交换操作 大的话,可以采用二分查找法 来减少比较操作 的数目。该算法可以认为是插入排序 的一个变种,称为二分查找排序 。

上代码:

view plaincopy to clipboardprint?
void insertsort(int array[],int n)
{
int i,j,temp;
for(i=1;i<n;i++)
{
temp=array[i];
j=i-1;
while((j>=0) && (array[j]>temp))
{
array[j+1]=array[j];
j–;
}
array[j+1]=temp;
}
}

算法复杂度:

如果目标是把n个元素的序列升序排列,那么采用插入排序 存在最好情况和最坏情况。最好情况就是,序列已经是升序排列了,在这种情况下,需要进行的比较操作需(n-1) 次即可。最坏情况就是,序列是降序排列,那么此时需要进行的比较共有n(n-1)/2 次。插入排序 的赋值操作是比较操作的次数加上(n-1) 次。平均来说插入排序 算法复杂度为O(n 2 )。因而,插入排序 不适合对于数据量比较大的排序应用。但是,如果需要排序的数据量很小,例如,量级小于千,那么插入排序 还是一个不错的选择。

2.希尔排序

希尔排序(Shell Sort)又叫做缩小增量排序(diminishing increment sort),是一种很优秀的排序法,算法本身不难理解,也很容易实现,而且它的速度很快。

插入排序(Insertion Sort) 的一个重要的特点是,如果原始数据的大部分元素已经排序,那么插入排序的速度很快(因为需要移动的元素很少)。从这个事实我们可以想到,如果原始数据只有很少元素,那么排序的速度也很快。--希尔排序就是基于这两点对插入排序作出了改进。

例如,有100个整数需要排序。
第一趟排序先把它分成50组,每组2个整数,分别排序。
第二趟排序再把经过第一趟排序后的100个整数分成25组,每组4个整数,分别排序。
第三趟排序再把前一次排序后的数分成12组,第组8个整数,分别排序。
照这样子分下去,最后一趟分成100组,每组一个整数,这就相当于一次插入排序。

由于开始时每组只有很少整数,所以排序很快。之后每组含有的整数越来越多,但是由于这些数也越来越有序,所以排序速度也很快。

下面用C语言实现希尔排序,用的是K&R里的算法,该算法结构很清晰。

view plaincopy to clipboardprint?
void shellsort(int array[],int n)
{
int gap,i,j,temp;
for(gap=n/2;gap>0;gap/=2)
{
for(i=gap;i<n;i++)
{
for(j=i-gap;j>=0 && array[j]>array[j+gap];j-=gap)
{
temp=array[j];
array[j]=array[j+gap];
array[j+gap]=temp;
}
}
}
}

3.快速排序

快速排序使用分治法 (Divide and conquer)策略来把一个序列 (list)分为两个子序列(sub-lists)。

步骤为:
从数列中挑出一个元素,称为 “基准”(pivot),
重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分割之后,该基准是它的最后位置。这个称为分割(partition) 操作。
递归 地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。

view plaincopy to clipboardprint?
void quickSort(int a[],int low,int high)
{
int i,j,pivot;
if(low<high)
{
pivot=a[low];
i=low;
j=high;
while(i<j)
{
while(i<j && a[j]>=pivot)
j–;
if(i<j)
a[i++]=a[j];
while(i<j && a[i]<=pivot)
i++;
if(i<j)
a[j–]=a[i];
}
a[i]=pivot;
quickSort(a,low,i-1);
quickSort(a,i+1,high);
}
}

4.堆排序

通常堆积树(heap)是通过一维阵列 来实现的。在起始阵列为 0 的情形中:
堆积树的根节点(即堆积树的最大值)存放在阵列位置 1 的地方

注意:不使用位置 0,否则左子树永远为 0 参考
节点i的左子节点在位置(2i)
节点i的右子节点在位置(2
i+1)
节点i的父节点在位置floor((i-1)/2)

在堆积树的数据结构中,堆积树中的最大值总是位于根节点。堆积树中定义以下几种操作:
最大堆积调整(Max_Heapify):将堆积树的末端子结点作调整,使得子结点永远小于父结点
建立最大堆积(Build_Max_Heap):将堆积树所有数据重新排序
堆积排序(HeapSort):移除位在第一个数据的根结点,并做最大堆积调整的递归 运算

view plaincopy to clipboardprint?
int parent(int i)
{
return (int)floor(i/2);
}
int left(int i)
{
return 2i;
}
int right(int i)
{
return 2
i+1;
}
void max_heapify(int a[],int i,int heap_size)
{
int l=left(i);
int r=right(i);
int largest,temp;
if(l<heap_size && a[l]>a[i])
{
largest=l;
}
else
{
largest=i;
}
if(r<heap_size && a[r]>a[largest])
{
largest=r;
}
if(largest != i)
{
temp=a[i];
a[i]=a[largest];
a[largest]=temp;
max_heapify(a,largest,heap_size);
}
}
void build_max_heap(int a[])
{
int i;
for(i=7;i>=0;i–)
{
max_heapify(a,i,7);
}
}
void print(int a[])
{
int i;
for(i=0;i<7;i++)
{
printf("%3d",a[i]);
}
printf("/n");
}
void heapsort(int a[],int heap_size)
{
build_max_heap(a);
int temp,i;
for(i=heap_size-1;i>=1;i–)
{
temp=a[0];
a[0]=a[i];
a[i]=temp;
heap_size=heap_size-1;
max_heapify(a,0,heap_size);
}
print(a);
}

5.归并排序

归并操作(merge),也叫归并算法,指的是将两个已经排序的序列合并成一个序列的操作。

归并操作的工作原理如下:
申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列
设定两个指针,最初位置分别为两个已经排序序列的起始位置
比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置
重复步骤3直到某一指针达到序列尾
将另一序列剩下的所有元素直接复制到合并序列尾

view plaincopy to clipboardprint?
static void merge(int array[], int p, int q, int r)
{
int i,k;
int begin1,end1,begin2,end2;
int* temp = new int [r-p+1]; //申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列
begin1= p; end1 = q; //设定两个指针,最初位置分别为两个已经排序序列的起始位置
begin2 = q+1; end2 = r;

k = 0;  
while((begin1 <= end1)&&( begin2 <= end2)) //比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置  
{  
    if(array[begin1]<array[begin2])  
    {  
        temp[k] = array[begin1];  begin1++;   
    }  
    else  
    {  
        temp[k] = array[begin2];  begin2++;  
    }  
    k++;          
}  

while(begin1<=end1) //若第一个序列有剩余,直接拷贝出来粘到合并序列尾  
{  
    temp[k++] = array[begin1++];  
}  
while(begin2<=end2) //若第二个序列有剩余,直接拷贝出来粘到合并序列尾  
{  
    temp[k++] = array[begin2++];  
}  
for (i = 0; i < (r - p +1); i++) //将排序好的序列拷贝回数组中  
    array[p+i] = temp[i];  
delete[] (temp);   

}

归并排序具体工作原理如下(假设序列共有n个元素):
将序列每相邻两个数字进行归并操作(merge),形成f l o o r (n / 2) 个序列,排序后每个序列包含两个元素
将上述序列再次归并,形成f l o o r (n / 4) 个序列,每个序列包含四个元素
重复步骤2,直到所有元素排序完毕
view plaincopy to clipboardprint?
void merge_sort(int array[], unsigned int first, unsigned int last)

{

int mid = 0;

if(first<last)

{

    mid = (first+last)/2;

    merge_sort(array, first, mid);

    merge_sort(array, mid+1,last);

    merge(array,first,mid,last);

}

}

转载声明: 本文转自 http://blog.csdn.net/tqyou85/archive/2009/09/28/4600980.aspx

===============================================================================

排序算法总结

排序算法是一种基本并且常用的算法。由于实际工作中处理的数量巨大,所以排序算法对算法本身的速度要求很高。
而一般我们所谓的算法的性能主要是指算法的复杂度,一般用O方法来表示。在后面我将给出详细的说明。
对于排序的算法我想先做一点简单的介绍,也是给这篇文章理一个提纲。
我将按照算法的复杂度,从简单到难来分析算法。
第一部分是简单排序算法,后面你将看到他们的共同点是算法复杂度为O(N*N)(因为没有使用word,所以无法打出上标和下标)。
第二部分是高级排序算法,复杂度为O(Log2(N))。这里我们只介绍一种算法。另外还有几种算法因为涉及树与堆的概念,所以这里不于讨论。
第三部分类似动脑筋。这里的两种算法并不是最好的(甚至有最慢的),但是算法本身比较奇特,值得参考(编程的角度)。同时也可以让我们从另外的角度来认识这个问题。
第四部分是我送给大家的一个餐后的甜点——一个基于模板的通用快速排序。由于是模板函数可以对任何数据类型排序(抱歉,里面使用了一些论坛专家的呢称)。

现在,让我们开始吧:

一、简单排序算法
由于程序比较简单,所以没有加什么注释。所有的程序都给出了完整的运行代码,并在我的VC环境
下运行通过。因为没有涉及MFC和WINDOWS的内容,所以在BORLAND C++的平台上应该也不会有什么
问题的。在代码的后面给出了运行过程示意,希望对理解有帮助。
1.冒泡法:
这是最原始,也是众所周知的最慢的算法了。他的名字的由来因为它的工作看来象是冒泡:
#include <iostream.h>
void BubbleSort(int* pData,int Count)
{
int iTemp;
for(int i=1;i<Count;i++)
{
for(int j=Count-1;j>=i;j–)
{
if(pData[j]<pData[j-1])
{
iTemp = pData[j-1];
pData[j-1] = pData[j];
pData[j] = iTemp;
}
}
}
}
void main()
{
int data[] = {10,9,8,7,6,5,4};
BubbleSort(data,7);
for (int i=0;i<7;i++)
cout<<data[i]<<" “;
cout<<”/n";
}
倒序(最糟情况)
第一轮:10,9,8,7->10,9,7,8->10,7,9,8->7,10,9,8(交换3次)
第二轮:7,10,9,8->7,10,8,9->7,8,10,9(交换2次)
第一轮:7,8,10,9->7,8,9,10(交换1次)
循环次数:6次
交换次数:6次
其他:
第一轮:8,10,7,9->8,10,7,9->8,7,10,9->7,8,10,9(交换2次)
第二轮:7,8,10,9->7,8,10,9->7,8,10,9(交换0次)
第一轮:7,8,10,9->7,8,9,10(交换1次)
循环次数:6次
交换次数:3次
上面我们给出了程序段,现在我们分析它:这里,影响我们算法性能的主要部分是循环和交换,
显然,次数越多,性能就越差。从上面的程序我们可以看出循环的次数是固定的,为1+2+…+n-1。
写成公式就是1/2*(n-1)n。
现在注意,我们给出O方法的定义:
若存在一常量K和起点n0,使当n>=n0时,有f(n)<=K
g(n),则f(n) = O(g(n))。(呵呵,不要说没
学好数学呀,对于编程数学是非常重要的!!!)
现在我们来看1/2*(n-1)n,当K=1/2,n0=1,g(n)=nn时,1/2*(n-1)n<=1/2nn=Kg(n)。所以f(n)
=O(g(n))=O(nn)。所以我们程序循环的复杂度为O(nn)。
再看交换。从程序后面所跟的表可以看到,两种情况的循环相同,交换不同。其实交换本身同数据源的有序程度有极大的关系,当数据处于倒序的情况时,交换次数同循环一样(每次循环判断都会交换),复杂度为O(n*n)。当数据为正序,将不会有交换。复杂度为O(0)。乱序时处于中间状态。正是由于这样的原因,我们通常都是通过循环次数来对比算法。

2.交换法:
交换法的程序最清晰简单,每次用当前的元素一一的同其后的元素比较并交换。
#include <iostream.h>
void ExchangeSort(int* pData,int Count)
{
int iTemp;
for(int i=0;i<Count-1;i++)
{
for(int j=i+1;j<Count;j++)
{
if(pData[j]<pData[i])
{
iTemp = pData[i];
pData[i] = pData[j];
pData[j] = iTemp;
}
}
}
}
void main()
{
int data[] = {10,9,8,7,6,5,4};
ExchangeSort(data,7);
for (int i=0;i<7;i++)
cout<<data[i]<<" “;
cout<<”/n";
}
倒序(最糟情况)
第一轮:10,9,8,7->9,10,8,7->8,10,9,7->7,10,9,8(交换3次)
第二轮:7,10,9,8->7,9,10,8->7,8,10,9(交换2次)
第一轮:7,8,10,9->7,8,9,10(交换1次)
循环次数:6次
交换次数:6次
其他:
第一轮:8,10,7,9->8,10,7,9->7,10,8,9->7,10,8,9(交换1次)
第二轮:7,10,8,9->7,8,10,9->7,8,10,9(交换1次)
第一轮:7,8,10,9->7,8,9,10(交换1次)
循环次数:6次
交换次数:3次
从运行的表格来看,交换几乎和冒泡一样糟。事实确实如此。循环次数和冒泡一样也是1/2*(n-1)n,所以算法的复杂度仍然是O(nn)。由于我们无法给出所有的情况,所以只能直接告诉大家他们在交换上面也是一样的糟糕(在某些情况下稍好,在某些情况下稍差)。
3.选择法:
现在我们终于可以看到一点希望:选择法,这种方法提高了一点性能(某些情况下)这种方法类似我们人为的排序习惯:从数据中选择最小的同第一个值交换,在从省下的部分中选择最小的与第二个交换,这样往复下去。
#include <iostream.h>
void SelectSort(int* pData,int Count)
{
int iTemp;
int iPos;
for(int i=0;i<Count-1;i++)
{
iTemp = pData[i];
iPos = i;
for(int j=i+1;j<Count;j++)
{
if(pData[j]<iTemp)
{
iTemp = pData[j];
iPos = j;
}
}
pData[iPos] = pData[i];
pData[i] = iTemp;
}
}
void main()
{
int data[] = {10,9,8,7,6,5,4};
SelectSort(data,7);
for (int i=0;i<7;i++)
cout<<data[i]<<" “;
cout<<”/n";
}
倒序(最糟情况)
第一轮:10,9,8,7->(iTemp=9)10,9,8,7->(iTemp=8)10,9,8,7->(iTemp=7)7,9,8,10(交换1次)
第二轮:7,9,8,10->7,9,8,10(iTemp=8)->(iTemp=8)7,8,9,10(交换1次)
第一轮:7,8,9,10->(iTemp=9)7,8,9,10(交换0次)
循环次数:6次
交换次数:2次
其他:
第一轮:8,10,7,9->(iTemp=8)8,10,7,9->(iTemp=7)8,10,7,9->(iTemp=7)7,10,8,9(交换1次)
第二轮:7,10,8,9->(iTemp=8)7,10,8,9->(iTemp=8)7,8,10,9(交换1次)
第一轮:7,8,10,9->(iTemp=9)7,8,9,10(交换1次)
循环次数:6次
交换次数:3次
遗憾的是算法需要的循环次数依然是1/2*(n-1)n。所以算法复杂度为O(nn)。
我们来看他的交换。由于每次外层循环只产生一次交换(只有一个最小值)。所以f(n)<=n
所以我们有f(n)=O(n)。所以,在数据较乱的时候,可以减少一定的交换次数。

4.插入法:
插入法较为复杂,它的基本工作原理是抽出牌,在前面的牌中寻找相应的位置插入,然后继续下一张
#include <iostream.h>
void InsertSort(int* pData,int Count)
{
int iTemp;
int iPos;
for(int i=1;i<Count;i++)
{
iTemp = pData[i];
iPos = i-1;
while((iPos>=0) && (iTemp<pData[iPos]))
{
pData[iPos+1] = pData[iPos];
iPos–;
}
pData[iPos+1] = iTemp;
}
}

void main()
{
int data[] = {10,9,8,7,6,5,4};
InsertSort(data,7);
for (int i=0;i<7;i++)
cout<<data[i]<<" “;
cout<<”/n";
}
倒序(最糟情况)
第一轮:10,9,8,7->9,10,8,7(交换1次)(循环1次)
第二轮:9,10,8,7->8,9,10,7(交换1次)(循环2次)
第一轮:8,9,10,7->7,8,9,10(交换1次)(循环3次)
循环次数:6次
交换次数:3次
其他:
第一轮:8,10,7,9->8,10,7,9(交换0次)(循环1次)
第二轮:8,10,7,9->7,8,10,9(交换1次)(循环2次)
第一轮:7,8,10,9->7,8,9,10(交换1次)(循环1次)
循环次数:4次
交换次数:2次
上面结尾的行为分析事实上造成了一种假象,让我们认为这种算法是简单算法中最好的,其实不是,
因为其循环次数虽然并不固定,我们仍可以使用O方法。从上面的结果可以看出,循环的次数f(n)<=
1/2n(n-1)<=1/2nn。所以其复杂度仍为O(n*n)(这里说明一下,其实如果不是为了展示这些简单
排序的不同,交换次数仍然可以这样推导)。现在看交换,从外观上看,交换次数是O(n)(推导类似
选择法),但我们每次要进行与内层循环相同次数的‘=’操作。正常的一次交换我们需要三次‘=’
而这里显然多了一些,所以我们浪费了时间。
最终,我个人认为,在简单排序算法中,选择法是最好的。

二、高级排序算法:
高级排序算法中我们将只介绍这一种,同时也是目前我所知道(我看过的资料中)的最快的。
它的工作看起来仍然象一个二叉树。首先我们选择一个中间值middle程序中我们使用数组中间值,然后
把比它小的放在左边,大的放在右边(具体的实现是从两边找,找到一对后交换)。然后对两边分别使
用这个过程(最容易的方法——递归)。
1.快速排序:
#include <iostream.h>
void run(int* pData,int left,int right)
{
int i,j;
int middle,iTemp;
i = left;
j = right;
middle = pData[(left+right)/2]; //求中间值
do{
while((pData[i]<middle) && (i<right))//从左扫描大于中值的数
i++;
while((pData[j]>middle) && (j>left))//从右扫描大于中值的数
j–;
if(i<=j)//找到了一对值
{
//交换
iTemp = pData[i];
pData[i] = pData[j];
pData[j] = iTemp;
i++;
j–;
}
}while(i<=j);//如果两边扫描的下标交错,就停止(完成一次)
//当左边部分有值(left<j),递归左半边
if(left<j)
run(pData,left,j);
//当右边部分有值(right>i),递归右半边
if(right>i)
run(pData,i,right);
}
void QuickSort(int* pData,int Count)
{
run(pData,0,Count-1);
}
void main()
{
int data[] = {10,9,8,7,6,5,4};
QuickSort(data,7);
for (int i=0;i<7;i++)
cout<<data[i]<<" “;
cout<<”/n";
}
这里我没有给出行为的分析,因为这个很简单,我们直接来分析算法:首先我们考虑最理想的情况
1.数组的大小是2的幂,这样分下去始终可以被2整除。假设为2的k次方,即k=log2(n)。
2.每次我们选择的值刚好是中间值,这样,数组才可以被等分。
第一层递归,循环n次,第二层循环2*(n/2)…
所以共有n+2(n/2)+4(n/4)+…+n*(n/n) = n+n+n+…+n=k*n=log2(n)*n
所以算法复杂度为O(log2(n)n)
其他的情况只会比这种情况差,最差的情况是每次选择到的middle都是最小值或最大值,那么他将变
成交换法(由于使用了递归,情况更糟)。但是你认为这种情况发生的几率有多大??呵呵,你完全
不必担心这个问题。实践证明,大多数的情况,快速排序总是最好的。
如果你担心这个问题,你可以使用堆排序,这是一种稳定的O(log2(n)n)算法,但是通常情况下速度要慢于快速排序(因为要重组堆)。
三、其他排序
1.双向冒泡:
通常的冒泡是单向的,而这里是双向的,也就是说还要进行反向的工作。
代码看起来复杂,仔细理一下就明白了,是一个来回震荡的方式。
写这段代码的作者认为这样可以在冒泡的基础上减少一些交换(我不这么认为,也许我错了)。
反正我认为这是一段有趣的代码,值得一看。
#include <iostream.h>
void Bubble2Sort(int
pData,int Count)
{
int iTemp;
int left = 1;
int right =Count -1;
int t;
do
{
//正向的部分
for(int i=right;i>=left;i–)
{
if(pData[i]<pData[i-1])
{
iTemp = pData[i];
pData[i] = pData[i-1];
pData[i-1] = iTemp;
t = i;
}
}
left = t+1;
//反向的部分
for(i=left;i<right+1;i++)
{
if(pData[i]<pData[i-1])
{
iTemp = pData[i];
pData[i] = pData[i-1];
pData[i-1] = iTemp;
t = i;
}
}
right = t-1;
}while(left<=right);
}
void main()
{
int data[] = {10,9,8,7,6,5,4};
Bubble2Sort(data,7);
for (int i=0;i<7;i++)
cout<<data[i]<<" “;
cout<<”/n";
}
2.SHELL排序
这个排序非常复杂,看了程序就知道了。
首先需要一个递减的步长,这里我们使用的是9、5、3、1(最后的步长必须是1)。
工作原理是首先对相隔9-1个元素的所有内容排序,然后再使用同样的方法对相隔5-1个元素的排序
以次类推。
#include <iostream.h>
void ShellSort(int
pData,int Count)
{
int step[4];
step[0] = 9;
step[1] = 5;
step[2] = 3;
step[3] = 1;
int iTemp;
int k,s,w;
for(int i=0;i<4;i++)
{
k = step[i];
s = -k;
for(int j=k;j<Count;j++)
{
iTemp = pData[j];
w = j-k;//求上step个元素的下标
if(s 0)
{
s = -k;
s++;
pData[s] = iTemp;
}
while((iTemp<pData[w]) && (w>=0) && (w<=Count))
{
pData[w+k] = pData[w];
w = w-k;
}
pData[w+k] = iTemp;
}
}
}
void main()
{
int data[] = {10,9,8,7,6,5,4,3,2,1,-10,-1};
ShellSort(data,12);
for (int i=0;i<12;i++)
cout<<data[i]<<" “;
cout<<”/n";
}
呵呵,程序看起来有些头疼。不过也不是很难,把s
0的块去掉就轻松多了,这里是避免使用0
步长造成程序异常而写的代码。这个代码我认为很值得一看。
这个算法的得名是因为其发明者的名字D.L.SHELL。依照参考资料上的说法:“由于复杂的数学原因
避免使用2的幂次步长,它能降低算法效率。”另外算法的复杂度为n的1.2次幂。同样因为非常复杂并
“超出本书讨论范围”的原因(我也不知道过程),我们只有结果了。

四、基于模板的通用排序:
这个程序我想就没有分析的必要了,大家看一下就可以了。不明白可以在论坛上问。
MyData.h文件
///
class CMyData
{
public:
CMyData(int Index,char* strData);
CMyData();
virtual ~CMyData();
int m_iIndex;
int GetDataSize(){ return m_iDataSize; };
const char* GetData(){ return m_strDatamember; };
//这里重载了操作符:
CMyData& operator =(CMyData &SrcData);
bool operator <(CMyData& data );
bool operator >(CMyData& data );
private:
char* m_strDatamember;
int m_iDataSize;
};

MyData.cpp文件

CMyData::CMyData():
m_iIndex(0),
m_iDataSize(0),
m_strDatamember(NULL)
{
}
CMyData::~CMyData()
{
if(m_strDatamember != NULL)
delete[] m_strDatamember;
m_strDatamember = NULL;
}
CMyData::CMyData(int Index,char* strData):
m_iIndex(Index),
m_iDataSize(0),
m_strDatamember(NULL)
{
m_iDataSize = strlen(strData);
m_strDatamember = new char[m_iDataSize+1];
strcpy(m_strDatamember,strData);
}
CMyData& CMyData::operator =(CMyData &SrcData)
{
m_iIndex = SrcData.m_iIndex;
m_iDataSize = SrcData.GetDataSize();
m_strDatamember = new char[m_iDataSize+1];
strcpy(m_strDatamember,SrcData.GetData());
return this;
}
bool CMyData::operator <(CMyData& data )
{
return m_iIndex<data.m_iIndex;
}
bool CMyData::operator >(CMyData& data )
{
return m_iIndex>data.m_iIndex;
}
///
//
//主程序部分
#include <iostream.h>
#include “MyData.h”
template
void run(T
pData,int left,int right)
{
int i,j;
T middle,iTemp;
i = left;
j = right;
//下面的比较都调用我们重载的操作符函数
middle = pData[(left+right)/2]; //求中间值
do{
while((pData[i]<middle) && (i<right))//从左扫描大于中值的数
i++;
while((pData[j]>middle) && (j>left))//从右扫描大于中值的数
j–;
if(i<=j)//找到了一对值
{
//交换
iTemp = pData[i];
pData[i] = pData[j];
pData[j] = iTemp;
i++;
j–;
}
}while(i<=j);//如果两边扫描的下标交错,就停止(完成一次)
//当左边部分有值(left<j),递归左半边
if(left<j)
run(pData,left,j);
//当右边部分有值(right>i),递归右半边
if(right>i)
run(pData,i,right);
}
template
void QuickSort(T* pData,int Count)
{
run(pData,0,Count-1);
}
void main()
{
CMyData data[] = {
CMyData(8,“xulion”),
CMyData(7,“sanzoo”),
CMyData(6,“wangjun”),
CMyData(5,“VCKBASE”),
CMyData(4,“jacky2000”),
CMyData(3,“cwally”),
CMyData(2,“VCUSER”),
CMyData(1,“isdong”)
};
QuickSort(data,8);
for (int i=0;i<8;i++)
cout<<data[i].m_iIndex<<" “<<data[i].GetData()<<”/n";
cout<<"/n";
}

转载声明: 本文转自 http://lxh1155.blog.163.com/blog/static/9311430200992113625652/

相关标签: 算法