欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Flink高可用集群搭建

程序员文章站 2022-06-17 09:36:09
...


安装节点要求:

  • jdk1.8
  • hadoop2.7.6
  • scala2.11.8
  • zookeeper3.4.10

节点分配

JobManager TaskManager ZooKeeper
hadoop01
hadoop02
hadoop03

1.高可用集群搭建

1.1上传安装包

rz -E C:/flink-1.7.2-bin-hadoop27-scala_2.11.tgz

1.2解压

tar -zxvf flink-1.7.2-bin-hadoop27-scala_2.11.tgz -C ~/apps/

1.3重命名

mv flink-1.7.2 flink

1.4配置环境变量

vim ~/.bash_profile
export FLINK_HOME=/home/hadoop/apps/flink
export PATH=$PATH:$FLINK_HOME/bin

重新加载配置文件

source ~/.bash_profile

1.5修改配置文件

1.5.1masters
vi $FLINK_HOME/conf/masters
hadoop01:8081
hadoop02:8081
1.5.2slaves
vi $FLINK_HOME/conf/slaves
hadoop01
hadoop02
hadoop03
1.5.3flink-conf.yaml
vi $FLINK_HOME/conf/flink-conf.yaml
################################################################################
#  Licensed to the Apache Software Foundation (ASF) under one
#  or more contributor license agreements.  See the NOTICE file
#  distributed with this work for additional information
#  regarding copyright ownership.  The ASF licenses this file
#  to you under the Apache License, Version 2.0 (the
#  "License"); you may not use this file except in compliance
#  with the License.  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
# limitations under the License.
################################################################################


#==============================================================================
# Common
#==============================================================================

# The external address of the host on which the JobManager runs and can be
# reached by the TaskManagers and any clients which want to connect. This setting
# is only used in Standalone mode and may be overwritten on the JobManager side
# by specifying the --host <hostname> parameter of the bin/jobmanager.sh executable.
# In high availability mode, if you use the bin/start-cluster.sh script and setup
# the conf/masters file, this will be taken care of automatically. Yarn/Mesos
# automatically configure the host name based on the hostname of the node where the
# JobManager runs.

#指定主节点,可以为localhost,这样在哪里启动谁就是JobManager
jobmanager.rpc.address: hadoop01

# The RPC port where the JobManager is reachable.
jobmanager.rpc.port: 6123


# The heap size for the JobManager JVM

jobmanager.heap.size: 1024m


# The heap size for the TaskManager JVM

taskmanager.heap.size: 1024m


# The number of task slots that each TaskManager offers. Each slot runs one parallel pipeline.

taskmanager.numberOfTaskSlots: 2

# The parallelism used for programs that did not specify and other parallelism.

parallelism.default: 1

# The default file system scheme and authority.
# 
# By default file paths without scheme are interpreted relative to the local
# root file system 'file:///'. Use this to override the default and interpret
# relative paths relative to a different file system,
# for example 'hdfs://mynamenode:12345'
#
# fs.default-scheme

#==============================================================================
# High Availability
#==============================================================================

# The high-availability mode. Possible options are 'NONE' or 'zookeeper'.
# 指定使用 zookeeper 进行 HA 协调
high-availability: zookeeper

# The path where metadata for master recovery is persisted. While ZooKeeper stores
# the small ground truth for checkpoint and leader election, this location stores
# the larger objects, like persisted dataflow graphs.
# 
# Must be a durable file system that is accessible from all nodes
# (like HDFS, S3, Ceph, nfs, ...) 
#
high-availability.storageDir: hdfs://bd1906/flink172/hastorage/

# The list of ZooKeeper quorum peers that coordinate the high-availability
# setup. This must be a list of the form:
# "host1:clientPort,host2:clientPort,..." (default clientPort: 2181)
#
high-availability.zookeeper.quorum: hadoop01:2181,hadoop02:2181,hadoop03:2181


# ACL options are based on https://zookeeper.apache.org/doc/r3.1.2/zookeeperProgrammers.html#sc_BuiltinACLSchemes
# It can be either "creator" (ZOO_CREATE_ALL_ACL) or "open" (ZOO_OPEN_ACL_UNSAFE)
# The default value is "open" and it can be changed to "creator" if ZK security is enabled
#
high-availability.zookeeper.client.acl: open

#==============================================================================
# Fault tolerance and checkpointing
#==============================================================================

# The backend that will be used to store operator state checkpoints if
# checkpointing is enabled.
#
# Supported backends are 'jobmanager', 'filesystem', 'rocksdb', or the
# <class-name-of-factory>.
#
# 指定 checkpoint 的类型和对应的数据存储目录
state.backend: filesystem
state.backend.fs.checkpointdir: hdfs://bd1906/flink-checkpoints

# Directory for checkpoints filesystem, when using any of the default bundled
# state backends.
#
# state.checkpoints.dir: hdfs://namenode-host:port/flink-checkpoints

# Default target directory for savepoints, optional.
#
# state.savepoints.dir: hdfs://namenode-host:port/flink-checkpoints

# Flag to enable/disable incremental checkpoints for backends that
# support incremental checkpoints (like the RocksDB state backend). 
#
# state.backend.incremental: false

#==============================================================================
# Web Frontend
#==============================================================================

# The address under which the web-based runtime monitor listens.
#
#web.address: 0.0.0.0

# The port under which the web-based runtime monitor listens.
# A value of -1 deactivates the web server.

rest.port: 8081

# Flag to specify whether job submission is enabled from the web-based
# runtime monitor. Uncomment to disable.

#web.submit.enable: false

#==============================================================================
# Advanced
#==============================================================================

# Override the directories for temporary files. If not specified, the
# system-specific Java temporary directory (java.io.tmpdir property) is taken.
#
# For framework setups on Yarn or Mesos, Flink will automatically pick up the
# containers' temp directories without any need for configuration.
#
# Add a delimited list for multiple directories, using the system directory
# delimiter (colon ':' on unix) or a comma, e.g.:
#     /data1/tmp:/data2/tmp:/data3/tmp
#
# Note: Each directory entry is read from and written to by a different I/O
# thread. You can include the same directory multiple times in order to create
# multiple I/O threads against that directory. This is for example relevant for
# high-throughput RAIDs.
#
# io.tmp.dirs: /tmp

# Specify whether TaskManager's managed memory should be allocated when starting
# up (true) or when memory is requested.
#
# We recommend to set this value to 'true' only in setups for pure batch
# processing (DataSet API). Streaming setups currently do not use the TaskManager's
# managed memory: The 'rocksdb' state backend uses RocksDB's own memory management,
# while the 'memory' and 'filesystem' backends explicitly keep data as objects
# to save on serialization cost.
#
# taskmanager.memory.preallocate: false

# The classloading resolve order. Possible values are 'child-first' (Flink's default)
# and 'parent-first' (Java's default).
#
# Child first classloading allows users to use different dependency/library
# versions in their application than those in the classpath. Switching back
# to 'parent-first' may help with debugging dependency issues.
#
# classloader.resolve-order: child-first

# The amount of memory going to the network stack. These numbers usually need 
# no tuning. Adjusting them may be necessary in case of an "Insufficient number
# of network buffers" error. The default min is 64MB, teh default max is 1GB.
# 
# taskmanager.network.memory.fraction: 0.1
# taskmanager.network.memory.min: 64mb
# taskmanager.network.memory.max: 1gb

#==============================================================================
# Flink Cluster Security Configuration
#==============================================================================

# Kerberos authentication for various components - Hadoop, ZooKeeper, and connectors -
# may be enabled in four steps:
# 1. configure the local krb5.conf file
# 2. provide Kerberos credentials (either a keytab or a ticket cache w/ kinit)
# 3. make the credentials available to various JAAS login contexts
# 4. configure the connector to use JAAS/SASL

# The below configure how Kerberos credentials are provided. A keytab will be used instead of
# a ticket cache if the keytab path and principal are set.

# security.kerberos.login.use-ticket-cache: true
# security.kerberos.login.keytab: /path/to/kerberos/keytab
# security.kerberos.login.principal: flink-user

# The configuration below defines which JAAS login contexts

# security.kerberos.login.contexts: Client,KafkaClient

#==============================================================================
# ZK Security Configuration
#==============================================================================

# Below configurations are applicable if ZK ensemble is configured for security

# Override below configuration to provide custom ZK service name if configured
# zookeeper.sasl.service-name: zookeeper

# The configuration below must match one of the values set in "security.kerberos.login.contexts"
# zookeeper.sasl.login-context-name: Client

#==============================================================================
# HistoryServer
#==============================================================================

# The HistoryServer is started and stopped via bin/historyserver.sh (start|stop)

# Directory to upload completed jobs to. Add this directory to the list of
# monitored directories of the HistoryServer as well (see below).
#jobmanager.archive.fs.dir: hdfs:///completed-jobs/

# The address under which the web-based HistoryServer listens.
#historyserver.web.address: 0.0.0.0

# The port under which the web-based HistoryServer listens.
#historyserver.web.port: 8082

# Comma separated list of directories to monitor for completed jobs.
#historyserver.archive.fs.dir: hdfs:///completed-jobs/

# Interval in milliseconds for refreshing the monitored directories.
#historyserver.archive.fs.refresh-interval: 10000

1.6拷贝配置文件

拷贝zoo.cfg、hdfs-site.xml、core-site.xml到flink配置文件目录

cp $ZOOKEEPER_HOME/conf/zoo.cfg $FLINK_HOME/conf/
cp $HADOOP_HOME/etc/hadoop/hdfs-site.xml $FLINK_HOME/conf/
cp $HADOOP_HOME/etc/hadoop/core-site.xml $FLINK_HOME/conf/

1.7远程发送文件

scp -r flink hadoop02:$PWD
scp -r flink hadoop03:$PWD
scp ~/.bash_profile hadoop02:/home/hadoop/
scp ~/.bash_profile hadoop03:/home/hadoop/

三台机器都要重新加载配置文件

source ~/.bash_profile

如果前面修改了jobmanager.rpc.address的值,请修改hadoop02上的flink-conf.yaml中jobmanager.rpc.address的值为hadoop02,hadoop03可改可不改,这样才能看出高可用集群的效果!!

依次启动zk、hdfs、flink

zkServer.sh start
start-dfs.sh
start-cluster.sh

查看进程

jps

Flink高可用集群搭建

查看Web UI http://hadoop01:8081/

Flink高可用集群搭建

可以跑一个官方案例测试一下(输入文件为flink文件夹中的README.txt文件)

flink run -m hadoop02:8081 \
$FLINK_HOME/examples/batch/WordCount.jar

Flink高可用集群搭建

至此集群搭建成功!!

停止集群命令

stop-cluster.sh

2.WordCount程序

Maven依赖

    <properties>
        <flink.version>1.7.2</flink.version>
        <hadoop.version>2.7.6</hadoop.version>
        <scala.version>2.11.8</scala.version>
    </properties>
    <dependencies>
        <!-- flink核心API -->
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-java</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-scala_2.11</artifactId>
            <version>${flink.version}</version>
        </dependency>

        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-streaming-java_2.11</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-streaming-scala_2.11</artifactId>
            <version>${flink.version}</version>
        </dependency>
    </dependencies>

2.1java版本

WordCountJava.java

package wc;

import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.typeinfo.Types;
import org.apache.flink.api.java.ExecutionEnvironment;
import org.apache.flink.api.java.operators.AggregateOperator;
import org.apache.flink.api.java.operators.DataSource;
import org.apache.flink.api.java.operators.FlatMapOperator;
import org.apache.flink.api.java.operators.MapOperator;
import org.apache.flink.api.java.tuple.Tuple2;

/**
 * @Author Daniel
 * @Description java版本Flink wordcount 程序
 **/
public class WordCountJava {

    public static void main(String[] args) {
        //编程入口
        ExecutionEnvironment batchEnv = ExecutionEnvironment.getExecutionEnvironment();
        //数据源
        DataSource<String> dataSource = batchEnv.fromElements("hadoop hadoop", "spark saprk saprk", "flink flink flink");
        //flatMap算子,一行转多行
        FlatMapOperator<String, String> wordDataSet = dataSource.flatMap((FlatMapFunction<String, String>) (value, out) -> {
            String[] words = value.split(" ");
            for (String word : words) {
                out.collect(word);
            }
        }).returns(Types.STRING);
        //map算子,计数
        MapOperator<String, Tuple2<String, Integer>> wordAndOneDataSet = wordDataSet.map((MapFunction<String, Tuple2<String, Integer>>) value -> new Tuple2(value, 1))
                .returns(Types.TUPLE(Types.STRING, Types.INT));
        //分组并计数
        AggregateOperator<Tuple2<String, Integer>> lastResult = wordAndOneDataSet.groupBy(0)
                .sum(1);
        try {
            //Sink打印结果
            lastResult.print();
//             batchEnv.execute("WordCountJava");//批处理不用此方法,流处理得使用
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
}

2.2scala版本

WordCountScala.scala

package wc

import org.apache.flink.streaming.api.scala.{DataStream, StreamExecutionEnvironment, _}

/**
  * @Author Daniel
  * @Description scala版本Flink wordcount 程序
  **/
object WordCountScala {

  def main(args: Array[String]): Unit = {
    //获取flink编程入口
    val streamEnv = StreamExecutionEnvironment.getExecutionEnvironment
    //从网络端口读取流数据
    val dS = streamEnv.socketTextStream("hadoop01", 9999)
    // 主要业务逻辑
    val resultDS = dS.flatMap(line => line.toString.split(" "))
      .map(word => Word(word, 1))
      .keyBy("word")
      .sum("count")
    //输出
    resultDS.print()
    //进行流数据处理,不间断的运行
    streamEnv.execute("StreamWordCountScala")
  }
}

//良好的数据结构
case class Word(word: String, count: Int)
nc -lk hadoop01 9999
> hadoop hadoop spark spark spark flink flink flink flink

Flink高可用集群搭建

相关标签: Flink flink