欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

深度学习-计算机视觉--图像增广

程序员文章站 2022-06-15 13:47:54
...

图像增广

大规模数据集是成功应用深度神经网络的前提。图像增广(image augmentation)技术通过对训练图像做一系列随机改变,来产生相似但又不同的训练样本,从而扩大训练数据集的规模

图像增广的另一种解释是,随机改变训练样本可以降低模型对某些属性的依赖,从而提高模型的泛化能力。例如,我们可以对图像进行不同方式的裁剪,使感兴趣的物体出现在不同位置,从而减轻模型对物体出现位置的依赖性。我们也可以调整亮度、色彩等因素来降低模型对色彩的敏感度。可以说,在当年AlexNet的成功中,图像增广技术功不可没。

导入实验所需的包或模块。

%matplotlib inline
import time
import torch
from torch import nn, optim
from torch.utils.data import Dataset, DataLoader
import torchvision
from PIL import Image
from matplotlib import pyplot as plt
from IPython import display

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

我们来读取一张形状为 510 × 320 510\times 320 510×320(高和宽分别为500像素和320像素)的图像作为实验的样例。

def use_svg_display():
    """Use svg format to display plot in jupyter"""
    display.set_matplotlib_formats('svg')

def set_figsize(figsize=(3.5, 2.5)):
    use_svg_display()
    # 设置图的尺寸
    plt.rcParams['figure.figsize'] = figsize
    
set_figsize()
img = Image.open('small_cat.jpg')
plt.imshow(img)
深度学习-计算机视觉--图像增广

定义绘图函数show_images。

def show_images(imgs, num_rows, num_cols, scale=2):
    figsize = (num_cols * scale, num_rows * scale)
    _, axes = plt.subplots(num_rows, num_cols, figsize=figsize)
    for i in range(num_rows):
        for j in range(num_cols):
            axes[i][j].imshow(imgs[i * num_cols + j])
            axes[i][j].axes.get_xaxis().set_visible(False)
            axes[i][j].axes.get_yaxis().set_visible(False)
    return axes

大部分图像增广方法都有一定的随机性。为了方便观察图像增广的效果,接下来我们定义一个辅助函数apply。这个函数对输入图像img多次运行图像增广方法aug并展示所有的结果。

def apply(img, aug, num_rows=2, num_cols=4, scale=1.5):
    Y = [aug(img) for _ in range(num_rows * num_cols)]
    show_images(Y, num_rows, num_cols, scale)

翻转和裁剪

左右翻转图像通常不改变物体的类别。它是最早也是最广泛使用的一种图像增广方法。下面我们通过torchvision.transforms模块创建RandomHorizontalFlip实例来实现一半概率的图像水平(左右)翻转。

apply(img, torchvision.transforms.RandomHorizontalFlip())
深度学习-计算机视觉--图像增广 上下翻转不如左右翻转通用。但是至少对于样例图像,上下翻转不会造成识别障碍。下面我们创建RandomVerticalFlip实例来实现一半概率的图像垂直(上下)翻转。
apply(img, torchvision.transforms.RandomVerticalFlip())
深度学习-计算机视觉--图像增广

在我们使用的样例图像里,猫在图像正中间,但一般情况下可能不是这样。池化层能降低卷积层对目标位置的敏感度。除此之外,我们还可以通过对图像随机裁剪来让物体以不同的比例出现在图像的不同位置,这同样能够降低模型对目标位置的敏感性。

在下面的代码里,我们每次随机裁剪出一块面积为原面积 10 10% \sim 100% 10的区域,且该区域的宽和高之比随机取自 0.5 ∼ 2 0.5 \sim 2 0.52,然后再将该区域的宽和高分别缩放到200像素。若无特殊说明,本节中 a a a b b b之间的随机数指的是从区间 [ a , b ] [a,b] [a,b]中随机均匀采样所得到的连续值。

shape_aug = torchvision.transforms.RandomResizedCrop(200, scale=(0.1, 1), ratio=(0.5, 2))
apply(img, shape_aug)
深度学习-计算机视觉--图像增广 ### 变化颜色 另一类增广方法是变化颜色。我们可以从4个方面改变图像的颜色:亮度(brightness)、对比度(contrast)、饱和度(saturation)和色调(hue)。在下面的例子里,我们将图像的亮度随机变化为原图亮度的$50%$($1-0.5$)$\sim 150%$($1+0.5$)。
apply(img, torchvision.transforms.ColorJitter(brightness=0.5))
深度学习-计算机视觉--图像增广 我们也可以随机变化图像的色调。
apply(img, torchvision.transforms.ColorJitter(hue=0.5))

类似地,我们也可以随机变化图像的对比度。
深度学习-计算机视觉--图像增广

apply(img, torchvision.transforms.ColorJitter(contrast=0.5))

我们也可以同时设置如何随机变化图像的亮度(brightness)、对比度(contrast)、饱和度(saturation)和色调(hue)。
深度学习-计算机视觉--图像增广

color_aug = torchvision.transforms.ColorJitter(
    brightness=0.5, contrast=0.5, saturation=0.5, hue=0.5)
apply(img, color_aug)
深度学习-计算机视觉--图像增广

叠加多个图像

实际应用中我们会将多个图像增广方法叠加使用。我们可以通过Compose实例将上面定义的多个图像增广方法叠加起来,再应用到每张图像之上。

augs = torchvision.transforms.Compose([
    torchvision.transforms.RandomHorizontalFlip(), color_aug, shape_aug])
apply(img, augs)
深度学习-计算机视觉--图像增广