欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Flume总结

程序员文章站 2022-06-15 11:36:03
...

Flume简介

  • Flume提供一个分布式的,可靠的,对大数据量的日志进行高效收集、聚集、移动的服务,Flume只能在Unix环境下运行。
  • Flume基于流式架构,容错性强,也很灵活简单。
  • Flume、Kafka用来实时进行数据收集,Spark、Flink用来实时处理数据,impala用来实时查询。
  • Flume官网:flume.apache.org

Flume角色

Flume总结

Source

用于采集数据,Source是生产数据流的地方,同时Source会将产生的数据流传输的Channel,这个有点类似于JAVA IO部分的Channel

Channel

用于桥接Sources和Sinks,类似于一个队列(先进先出)

Sink

从Channel收集数据,将数据写到目标源(可以使下一个Source,也可以是HDFS或者HBase)

Event

传输单元,Flume数据传输的基本单元,以时间的形式将数据从源头送至目的地

Flume传输过程

source监控某个文件或数据流,数据源产生新的数据,拿到该数据后,将数据封装在一个Event中,并Put到channel后commit提交,channel队列先进先出,sink去channel队列中拉取数据,然后写入到HDFS中

Flume部署及使用

文件配置

  • 查询JAVA_HOME: echo $JAVA_HOME

    显示/opt/module/jdk1.8.0_144  /opt/module/jdk1.8.0_144
    
  • 安装 Flume

    [aaa@qq.com software]$ tar -zxvf apache-flume1.8.0-bin.tar.gz -C /opt/module/
    
  • 改名

    [aaa@qq.com conf]$ mv flume-env.sh.template flume-env.sh
    
  • flume-env.sh涉及修改项:

    export JAVA_HOME=/opt/module/jdk1.8.0_144
    

案例

案例一:监控端口数据

**目标:**Flume监控一端Console,另一端Console发送消息,使被监控端实时显示。

  • 安装telnet工具

    yum -y install telnet
    

    Flume总结

  • 创建Flume Agent配置文件flume-telnet.conf

    #定义Agent
    a1.sources = r1
    a1.sinks = k1
    a1.channels = c1
    
    #定义netcatsource
    a1.sources.r1.type = netcat
    a1.sources.r1.bind = bigdata111
    a1.sources.r1.port = 44445
    
    # 定义sink
    a1.sinks.k1.type = logger
    
    # 定义channel
    a1.channels.c1.type = memory
    a1.channels.c1.capacity = 1000
    a1.channels.c1.transactionCapacity = 100
    
    # 双向链接
    a1.sources.r1.channels = c1
    a1.sinks.k1.channel = c1
    
  • 判断44445端口是否被占用

    $ netstat -tunlp | grep 44445
    
  • 启动flume配置文件

    /opt/module/flume-1.8.0/bin/flume-ng agent \
    --conf /opt/module/flume1.8.0/conf/ \
    --name a1 \
    --conf-file /opt/module/flume-1.8.0/jobconf/flume-telnet.conf \
    -Dflume.root.logger==INFO,console
    bin/flume-ng agent --conf conf/ --name a1 --conf-file conf/flume-telnet.conf -Dflume.root.logger==INFO,console
    
  • 使用telnet工具向本机的44444端口发送内容

    $ telnet bigdata111 44445
    

案例二:实时读取本地文件到HDFS

  • 创建flume-hdfs.conf文件

    # 1 agent
    a2.sources = r2
    a2.sinks = k2
    a2.channels = c2
    
    # 2 source
    a2.sources.r2.type = exec
    a2.sources.r2.command = tail -F /opt/plus
    a2.sources.r2.shell = /bin/bash -c
    
    # 3 sink
    a2.sinks.k2.type = hdfs
    a2.sinks.k2.hdfs.path = hdfs://bigdata111:9000/flume/%Y%m%d/%H
    #上传文件的前缀
    a2.sinks.k2.hdfs.filePrefix = logs-
    #是否按照时间滚动文件夹
    a2.sinks.k2.hdfs.round = true
    #多少时间单位创建一个新的文件夹
    a2.sinks.k2.hdfs.roundValue = 1
    #重新定义时间单位
    a2.sinks.k2.hdfs.roundUnit = hour
    #是否使用本地时间戳
    a2.sinks.k2.hdfs.useLocalTimeStamp = true
    #积攒多少个Event才flush到HDFS一次
    a2.sinks.k2.hdfs.batchSize = 1000
    #设置文件类型,可支持压缩
    a2.sinks.k2.hdfs.fileType = DataStream
    #多久生成一个新的文件
    a2.sinks.k2.hdfs.rollInterval = 600
    #设置每个文件的滚动大小
    a2.sinks.k2.hdfs.rollSize = 134217700
    #文件的滚动与Event数量无关
    a2.sinks.k2.hdfs.rollCount = 0
    #最小副本数
    a2.sinks.k2.hdfs.minBlockReplicas = 1
    
    # Use a channel which buffers events in memory
    a2.channels.c2.type = memory
    a2.channels.c2.capacity = 1000
    a2.channels.c2.transactionCapacity = 100
    
    # Bind the source and sink to the channel
    a2.sources.r2.channels = c2
    a2.sinks.k2.channel = c2
    
  • 执行监控配置

    /opt/module/flume1.8.0/bin/flume-ng agent \
    --conf /opt/module/flume1.8.0/conf/ \
    --name a2 \
    --conf-file /opt/module/flume1.8.0/jobconf/flume-hdfs.conf
    #简写版
    /opt/module/flume1.8.0/bin/flume-ng agent \
    --c/opt/module/flume1.8.0/conf/ \
    --n a2 \
    --f /opt/module/flume1.8.0/jobconf/flume-hdfs.conf
    

案例三:实时读取目录文件到HDFS

目标:使用flume监听整个目录的文件

分步实现

  • 创建配置文件flume-dir.conf

    #1 Agent
    a3.sources = r3
    a3.sinks = k3
    a3.channels = c3
    
    #2 source
    #监控目录的类型
    a3.sources.r3.type = spooldir
    #监控目录的路径
    a3.sources.r3.spoolDir = /opt/module/flume1.8.0/upload
    #哪个文件上传hdfs,然后给这个文件添加一个后缀
    a3.sources.r3.fileSuffix = .COMPLETED
    a3.sources.r3.fileHeader = true
    #忽略所有以.tmp结尾的文件,不上传(可选)
    a3.sources.r3.ignorePattern = ([^ ]*\.tmp)
    
    # 3 sink
    a3.sinks.k3.type = hdfs
    a3.sinks.k3.hdfs.path = hdfs://bigdata111:9000/flume/%H
    #上传文件的前缀
    a3.sinks.k3.hdfs.filePrefix = upload-
    #是否按照时间滚动文件夹
    a3.sinks.k3.hdfs.round = true
    #多少时间单位创建一个新的文件夹
    a3.sinks.k3.hdfs.roundValue = 1
    #重新定义时间单位
    a3.sinks.k3.hdfs.roundUnit = hour
    #是否使用本地时间戳
    a3.sinks.k3.hdfs.useLocalTimeStamp = true
    #积攒多少个Event才flush到HDFS一次
    a3.sinks.k3.hdfs.batchSize = 100
    #设置文件类型,可支持压缩
    a3.sinks.k3.hdfs.fileType = DataStream
    #多久生成一个新的文件
    a3.sinks.k3.hdfs.rollInterval = 600
    #设置每个文件的滚动大小大概是128M
    a3.sinks.k3.hdfs.rollSize = 134217700
    #文件的滚动与Event数量无关
    a3.sinks.k3.hdfs.rollCount = 0
    #最小副本数
    a3.sinks.k3.hdfs.minBlockReplicas = 1
    
    # Use a channel which buffers events in memory
    a3.channels.c3.type = memory
    a3.channels.c3.capacity = 1000
    a3.channels.c3.transactionCapacity = 100
    
    # Bind the source and sink to the channel
    a3.sources.r3.channels = c3
    a3.sinks.k3.channel = c3
    
  • 执行测试:执行如下脚本后,请向upload文件夹中添加文件试试

    /opt/module/flume1.8.0/bin/flume-ng agent \
    --conf /opt/module/flume1.8.0/conf/ \
    --name a3 \
    --conf-file /opt/module/flume1.8.0/jobconf/flume-dir.conf
    

    尖叫提示: 在使用Spooling Directory Source时

    • 不要在监控目录中创建并持续修改文件
    • 上传完成的文件会以.COMPLETED结尾
    • 被监控文件夹每500毫秒扫描一次文件变动

案例四:Flume与Flume之间数据传递:单Flume多Channel、Sink

Flume总结

目标:使用flume1监控文件变动,flume1将变动内容传递给flume-2,flume-2负责存储到HDFS。同时flume1将变动内容传递给flume-3,flume-3负责输出到local

分步实现:

  • 创建flume1.conf,用于监控某文件的变动,同时产生两个channel和两个sink分别输送给flume2和flume3:

  • 创建flume-2.conf,用于接收flume1的event,同时产生1个channel和1个sink,将数据输送给hdfs:

    # 1 agent
    a2.sources = r1
    a2.sinks = k1
    a2.channels = c1
    
    # 2 source
    a2.sources.r1.type = avro
    a2.sources.r1.bind = bigdata112
    a2.sources.r1.port = 4141
    
    # 3 sink
    a2.sinks.k1.type = hdfs
    a2.sinks.k1.hdfs.path = hdfs://bigdata111:9000/flume2/%H
    #上传文件的前缀
    a2.sinks.k1.hdfs.filePrefix = flume2-
    #是否按照时间滚动文件夹
    a2.sinks.k1.hdfs.round = true
    #多少时间单位创建一个新的文件夹
    a2.sinks.k1.hdfs.roundValue = 1
    #重新定义时间单位
    a2.sinks.k1.hdfs.roundUnit = hour
    #是否使用本地时间戳
    a2.sinks.k1.hdfs.useLocalTimeStamp = true
    #积攒多少个Event才flush到HDFS一次
    a2.sinks.k1.hdfs.batchSize = 100
    #设置文件类型,可支持压缩
    a2.sinks.k1.hdfs.fileType = DataStream
    #多久生成一个新的文件
    a2.sinks.k1.hdfs.rollInterval = 600
    #设置每个文件的滚动大小大概是128M
    a2.sinks.k1.hdfs.rollSize = 134217700
    #文件的滚动与Event数量无关
    a2.sinks.k1.hdfs.rollCount = 0
    #最小副本数
    a2.sinks.k1.hdfs.minBlockReplicas = 1
    
    
    # 4 channel
    a2.channels.c1.type = memory
    a2.channels.c1.capacity = 1000
    a2.channels.c1.transactionCapacity = 100
    
    #5 Bind 
    a2.sources.r1.channels = c1
    a2.sinks.k1.channel = c1
    
  • 创建flume-3.conf,用于接收flume1的event,同时产生1个channel和1个sink,将数据输送给本地目录:

    #1 agent
    a3.sources = r1
    a3.sinks = k1
    a3.channels = c1
    
    # 2 source
    a3.sources.r1.type = avro
    a3.sources.r1.bind = bigdata113
    a3.sources.r1.port = 4141
    
    #3 sink
    a3.sinks.k1.type = file_roll
    #备注:此处的文件夹需要先创建好
    a3.sinks.k1.sink.directory = /opt/flume3
    
    # 4 channel
    a3.channels.c1.type = memory
    a3.channels.c1.capacity = 1000
    a3.channels.c1.transactionCapacity = 100
    
    # 5 Bind
    a3.sources.r1.channels = c1
    a3.sinks.k1.channel = c1
    

    尖叫提示:输出的本地目录必须是已经存在的目录,如果该目录不存在,并不会创建新的目录。

  • 执行测试:分别开启对应flume-job(依次启动flume1,flume-2,flume-3),同时产生文件变动并观察结果:

    $ bin/flume-ng agent --conf conf/ --name a1 --conf-file jobconf/flume1.conf
    
    $ bin/flume-ng agent --conf conf/ --name a2 --conf-file jobconf/flume2.conf
    
    $ bin/flume-ng agent --conf conf/ --name a3 --conf-file jobconf/flume3.conf
    

案例五:Flume与Flume之间数据传递,多Flume汇总数据到单Flume

Flume总结

目标:flume11监控文件hive.log,flume-22监控某一个端口的数据流,flume11与flume-22将数据发送给flume-33,flume33将最终数据写入到HDFS。

分步实现:

  • 创建flume11.conf,用于监控hive.log文件,同时sink数据到flume-33:

    # 1 agent
    a1.sources = r1
    a1.sinks = k1
    a1.channels = c1
    
    # 2 source
    a1.sources.r1.type = exec
    a1.sources.r1.command = tail -F /opt/plus
    a1.sources.r1.shell = /bin/bash -c
    
    # 3 sink
    a1.sinks.k1.type = avro
    a1.sinks.k1.hostname = bigdata113
    a1.sinks.k1.port = 4141
    
    # 4 channel
    a1.channels.c1.type = memory
    a1.channels.c1.capacity = 1000
    a1.channels.c1.transactionCapacity = 100
    
    # 5. Bind
    a1.sources.r1.channels = c1
    a1.sinks.k1.channel = c1
    
  • 创建flume-22.conf,用于监控端口44444数据流,同时sink数据到flume-33:

    # 1 agent
    a2.sources = r1
    a2.sinks = k1
    a2.channels = c1
    
    # 2 source
    a2.sources.r1.type = netcat
    a2.sources.r1.bind = bigdata112
    a2.sources.r1.port = 44444
    
    #3 sink
    a2.sinks.k1.type = avro
    a2.sinks.k1.hostname = bigdata113
    a2.sinks.k1.port = 4141
    
    # 4 channel
    a2.channels.c1.type = memory
    a2.channels.c1.capacity = 1000
    a2.channels.c1.transactionCapacity = 100
    
    # 5 Bind
    a2.sources.r1.channels = c1
    a2.sinks.k1.channel = c1
    
  • 创建flume33.conf,用于接收flume11与flume22发送过来的数据流,最终合并后sink到HDFS:

    # 1 agent
    a3.sources = r1
    a3.sinks = k1
    a3.channels = c1
    
    # 2 source
    a3.sources.r1.type = avro
    a3.sources.r1.bind = bigdata113
    a3.sources.r1.port = 4141
    
    # 3 sink
    a3.sinks.k1.type = hdfs
    a3.sinks.k1.hdfs.path = hdfs://bigdata111:9000/flume3/%H
    #上传文件的前缀
    a3.sinks.k1.hdfs.filePrefix = flume3-
    #是否按照时间滚动文件夹
    a3.sinks.k1.hdfs.round = true
    #多少时间单位创建一个新的文件夹
    a3.sinks.k1.hdfs.roundValue = 1
    #重新定义时间单位
    a3.sinks.k1.hdfs.roundUnit = hour
    #是否使用本地时间戳
    a3.sinks.k1.hdfs.useLocalTimeStamp = true
    #积攒多少个Event才flush到HDFS一次
    a3.sinks.k1.hdfs.batchSize = 100
    #设置文件类型,可支持压缩
    a3.sinks.k1.hdfs.fileType = DataStream
    #多久生成一个新的文件
    a3.sinks.k1.hdfs.rollInterval = 600
    #设置每个文件的滚动大小大概是128M
    a3.sinks.k1.hdfs.rollSize = 134217700
    #文件的滚动与Event数量无关
    a3.sinks.k1.hdfs.rollCount = 0
    #最小冗余数
    a3.sinks.k1.hdfs.minBlockReplicas = 1
    
    # 4 channel
    a3.channels.c1.type = memory
    a3.channels.c1.capacity = 1000
    a3.channels.c1.transactionCapacity = 100
    
    # 5 Bind
    a3.sources.r1.channels = c1
    a3.sinks.k1.channel = c1
    
  • 执行测试:分别开启对应flume-job(依次启动flume-33,flume-22,flume11),同时产生文件变动并观察结果:

    $ bin/flume-ng agent --conf conf/ --name a3 --conf-file jobconf/flume33.conf
    $ bin/flume-ng agent --conf conf/ --name a2 --conf-file jobconf/flume22.conf
    $ bin/flume-ng agent --conf conf/ --name a1 --conf-file jobconf/flume11.conf
    

    数据发送

    telnet bigdata111 44444    打开后发送5555555
    在/opt/plus 中追加666666
    

案例六:Flume拦截器

时间戳拦截器
  • Timestamp.conf
#1.定义agent名, source、channel、sink的名称
a4.sources = r1
a4.channels = c1
a4.sinks = k1

#2.具体定义source
a4.sources.r1.type = spooldir
a4.sources.r1.spoolDir = /opt/module/flume-1.8.0/upload

#定义拦截器,为文件最后添加时间戳
a4.sources.r1.interceptors = timestamp
a4.sources.r1.interceptors.timestamp.type = org.apache.flume.interceptor.TimestampInterceptor$Builder

#具体定义channel
a4.channels.c1.type = memory
a4.channels.c1.capacity = 10000
a4.channels.c1.transactionCapacity = 100


#具体定义sink
a4.sinks.k1.type = hdfs
a4.sinks.k1.hdfs.path = hdfs://bigdata111:9000/flume-interceptors/%H
a4.sinks.k1.hdfs.filePrefix = events-
a4.sinks.k1.hdfs.fileType = DataStream

#不按照条数生成文件
a4.sinks.k1.hdfs.rollCount = 0
#HDFS上的文件达到128M时生成一个文件
a4.sinks.k1.hdfs.rollSize = 134217728
#HDFS上的文件达到60秒生成一个文件
a4.sinks.k1.hdfs.rollInterval = 60

#组装source、channel、sink
a4.sources.r1.channels = c1
a4.sinks.k1.channel = c1
  • 启动命令
/opt/module/flume-1.8.0/bin/flume-ng agent -n a4 \
-f /opt/module/flume-1.8.0/jobconf/flume-interceptors.conf \
-c /opt/module/flume-1.8.0/conf \
-Dflume.root.logger=INFO,console
主机名拦截器
  • Host.conf

    #1.定义agent
    a1.sources= r1
    a1.sinks = k1
    a1.channels = c1
    
    #2.定义source
    a1.sources.r1.type = exec
    a1.sources.r1.channels = c1
    a1.sources.r1.command = tail -F /opt/plus
    #拦截器
    a1.sources.r1.interceptors = i1
    a1.sources.r1.interceptors.i1.type = host
    
    #参数为true时用IP192.168.1.111,参数为false时用主机名,默认为true
    a1.sources.r1.interceptors.i1.useIP = false
    a1.sources.r1.interceptors.i1.hostHeader = agentHost
    
     #3.定义sinks
    a1.sinks.k1.type=hdfs
    a1.sinks.k1.channel = c1
    a1.sinks.k1.hdfs.path = hdfs://bigdata111:9000/flumehost/%{agentHost}
    a1.sinks.k1.hdfs.filePrefix = plus_%{agentHost}
    #往生成的文件加后缀名.log
    a1.sinks.k1.hdfs.fileSuffix = .log
    a1.sinks.k1.hdfs.fileType = DataStream
    a1.sinks.k1.hdfs.writeFormat = Text
    a1.sinks.k1.hdfs.rollInterval = 10
    a1.sinks.k1.hdfs.useLocalTimeStamp = true
     
    a1.channels.c1.type = memory
    a1.channels.c1.capacity = 1000
    a1.channels.c1.transactionCapacity = 100
     
    a1.sources.r1.channels = c1
    a1.sinks.k1.channel = c1
    

    启动命令:

    bin/flume-ng agent -c conf/ -f jobconf/host.conf -n a1 -Dflume.root.logger=INFO,console
    
UUID拦截器
  • uuid.conf

    a1.sources = r1
    a1.sinks = k1
    a1.channels = c1
    
    a1.sources.r1.type = exec
    a1.sources.r1.channels = c1
    a1.sources.r1.command = tail -F /opt/plus
    a1.sources.r1.interceptors = i1
    #type的参数不能写成uuid,得写具体,否则找不到类
    a1.sources.r1.interceptors.i1.type = org.apache.flume.sink.solr.morphline.UUIDInterceptor$Builder
    #如果UUID头已经存在,它应该保存
    a1.sources.r1.interceptors.i1.preserveExisting = true
    a1.sources.r1.interceptors.i1.prefix = UUID_
    
    #如果sink类型改为HDFS,那么在HDFS的文本中没有headers的信息数据
    a1.sinks.k1.type = logger
    
    a1.channels.c1.type = memory
    a1.channels.c1.capacity = 1000
    a1.channels.c1.transactionCapacity = 100
    
    a1.sources.r1.channels = c1
    a1.sinks.k1.channel = c1
    
  • 启动命令

    bin/flume-ng agent -c conf/ -f jobconf/uuid.conf -n a1 -Dflume.root.logger==INFO,console
    
查询替换拦截器
  • search.conf

    #1 agent
    a1.sources = r1
    a1.sinks = k1
    a1.channels = c1
    
    #2 source
    a1.sources.r1.type = exec
    a1.sources.r1.channels = c1
    a1.sources.r1.command = tail -F /opt/plus
    a1.sources.r1.interceptors = i1
    a1.sources.r1.interceptors.i1.type = search_replace
    
    #遇到数字改成itstar,A123会替换为Aitstar
    a1.sources.r1.interceptors.i1.searchPattern = [0-9]+
    a1.sources.r1.interceptors.i1.replaceString = ***
    a1.sources.r1.interceptors.i1.charset = UTF-8
    
    #3 sink
    a1.sinks.k1.type = logger
    
    #4 Chanel
    a1.channels.c1.type = memory
    a1.channels.c1.capacity = 1000
    a1.channels.c1.transactionCapacity = 100
    
    #5 bind
    a1.sources.r1.channels = c1
    a1.sinks.k1.channel = c1
    
    
  • 启动命令

    bin/flume-ng agent -c conf/ -f jobconf/search.conf -n a1 -Dflume.root.logger=INFO,console
    
正则过滤拦截器
  • filter.conf

    #1 agent
    a1.sources = r1
    a1.sinks = k1
    a1.channels = c1
    
    #2 source
    a1.sources.r1.type = exec
    a1.sources.r1.channels = c1
    a1.sources.r1.command = tail -F /opt/plus
    a1.sources.r1.interceptors = i1
    a1.sources.r1.interceptors.i1.type = regex_filter
    a1.sources.r1.interceptors.i1.regex = ^A.*
    #如果excludeEvents设为false,表示过滤掉不是以A开头的events。如果excludeEvents设为true,则表示过滤掉以A开头的events。
    a1.sources.r1.interceptors.i1.excludeEvents = true
    
    a1.sinks.k1.type = logger
    
    a1.channels.c1.type = memory
    a1.channels.c1.capacity = 1000
    a1.channels.c1.transactionCapacity = 100
    
    a1.sources.r1.channels = c1
    a1.sinks.k1.channel = c1
    
    
  • 启动命令

    bin/flume-ng agent -c conf/ -f jobconf/filter.conf -n a1 -Dflume.root.logger=INFO,console
    
正则抽取拦截器
  • extractor.conf

    #1 agent
    a1.sources = r1
    a1.sinks = k1
    a1.channels = c1
    
    #2 source
    a1.sources.r1.type = exec
    a1.sources.r1.channels = c1
    a1.sources.r1.command = tail -F /opt/plus
    a1.sources.r1.interceptors = i1
    a1.sources.r1.interceptors.i1.type = regex_extractor
    # hostname is bigdata111 ip is 192.168.20.111
    a1.sources.r1.interceptors.i1.regex = hostname is (.*?) ip is (.*)
    a1.sources.r1.interceptors.i1.serializers = s1 s2
    #hostname(自定义)= (.*?)->bigdata111 
    a1.sources.r1.interceptors.i1.serializers.s1.name = hostname
    #ip(自定义) = (.*)->192.168.20.111
    a1.sources.r1.interceptors.i1.serializers.s2.name = ip
    
    a1.sinks.k1.type = logger
    
    a1.channels.c1.type = memory
    a1.channels.c1.capacity = 1000
    a1.channels.c1.transactionCapacity = 100
    
    a1.sources.r1.channels = c1
    a1.sinks.k1.channel = c1
    
  • 启动命令

    bin/flume-ng agent -c conf/ -f jobconf/extractor.conf -n a1 -Dflume.root.logger=INFO,console
    

    注:正则抽取拦截器的headers不会出现在文件名和文件内容中

案例七:Flume自定义拦截器

字母小写转大写

  • Pom.xml

    <dependencies>
            <!-- flume核心依赖 -->
            <dependency>
                <groupId>org.apache.flume</groupId>
                <artifactId>flume-ng-core</artifactId>
                <version>1.8.0</version>
            </dependency>
        </dependencies>
        <build>
            <plugins>
                <!-- 打包插件 -->
                <plugin>
                    <groupId>org.apache.maven.plugins</groupId>
                    <artifactId>maven-jar-plugin</artifactId>
                    <version>2.4</version>
                    <configuration>
                        <archive>
                            <manifest>
                                <addClasspath>true</addClasspath>
                                <classpathPrefix>lib/</classpathPrefix>
                                <mainClass></mainClass>
                            </manifest>
                        </archive>
                    </configuration>
                </plugin>
                <!-- 编译插件 -->
                <plugin>
                    <groupId>org.apache.maven.plugins</groupId>
                    <artifactId>maven-compiler-plugin</artifactId>
                    <configuration>
                        <source>1.8</source>
                        <target>1.8</target>
                        <encoding>utf-8</encoding>
                    </configuration>
                </plugin>
            </plugins>
        </build>
    
  • 自定义实现拦截器

    import org.apache.flume.Context;
    import org.apache.flume.Event;
    import org.apache.flume.interceptor.Interceptor;
     
    import java.util.ArrayList;
    import java.util.List;
     
    public class MyInterceptor implements Interceptor {
        @Override
        public void initialize() {
        }
     
        @Override
        public void close() {
        }
     
        /**
         * 拦截source发送到通道channel中的消息
         *
         * @param event 接收过滤的event
         * @return event    根据业务处理后的event
         */
        @Override
        public Event intercept(Event event) {
            // 获取事件对象中的字节数据
            byte[] arr = event.getBody();
            // 将获取的数据转换成大写
            event.setBody(new String(arr).toUpperCase().getBytes());
            // 返回到消息中
            return event;
        }
        // 接收被过滤事件集合
        @Override
        public List<Event> intercept(List<Event> events) {
            List<Event> list = new ArrayList<>();
            for (Event event : events) {
                list.add(intercept(event));
            }
            return list;
        }
     
        public static class Builder implements Interceptor.Builder {
            // 获取配置文件的属性
            @Override
            public Interceptor build() {
                return new MyInterceptor();
            }
     
            @Override
            public void configure(Context context) {
     
            }
        }
    

    使用Maven做成Jar包,在flume的目录下mkdir jar,上传此jar到jar目录中

  • Flume配置文件

    ToUpCase.conf

    #1.agent 
    a1.sources = r1
    a1.sinks =k1
    a1.channels = c1
     
     
    # Describe/configure the source
    a1.sources.r1.type = exec
    a1.sources.r1.command = tail -F /opt/plus
    a1.sources.r1.interceptors = i1
    #全类名$Builder
    a1.sources.r1.interceptors.i1.type = ToUpCase.MyInterceptor$Builder
     
    # Describe the sink
    a1.sinks.k1.type = hdfs
    a1.sinks.k1.hdfs.path = /ToUpCase1
    a1.sinks.k1.hdfs.filePrefix = events-
    a1.sinks.k1.hdfs.round = true
    a1.sinks.k1.hdfs.roundValue = 10
    a1.sinks.k1.hdfs.roundUnit = minute
    a1.sinks.k1.hdfs.rollInterval = 3
    a1.sinks.k1.hdfs.rollSize = 20
    a1.sinks.k1.hdfs.rollCount = 5
    a1.sinks.k1.hdfs.batchSize = 1
    a1.sinks.k1.hdfs.useLocalTimeStamp = true
    #生成的文件类型,默认是 Sequencefile,可用 DataStream,则为普通文本
    a1.sinks.k1.hdfs.fileType = DataStream
     
    # Use a channel which buffers events in memory
    a1.channels.c1.type = memory
    a1.channels.c1.capacity = 1000
    a1.channels.c1.transactionCapacity = 100
     
    # Bind the source and sink to the channel
    a1.sources.r1.channels = c1
    a1.sinks.k1.channel = c1
    

    运行命令:

    bin/flume-ng agent -c conf/ -n a1 -f jar/ToUpCase.conf -C jar/Flume-1.0-SNAPSHOT.jar -Dflume.root.logger=DEBUG,console
    

案例七:Flume对接kafka

  • 配置flume(flume-kafka.conf)

    # define
    a1.sources = r1
    a1.sinks = k1
    a1.channels = c1
    
    # source
    a1.sources.r1.type = exec
    a1.sources.r1.command = tail -F -c +0 /opt/jars/calllog.csv
    a1.sources.r1.shell = /bin/bash -c
    
    # sink
    a1.sinks.k1.type = org.apache.flume.sink.kafka.KafkaSink
    a1.sinks.k1.brokerList = bigdata111:9092,bigdata112:9092,bigdata113:9092
    a1.sinks.k1.topic = calllog
    a1.sinks.k1.batchSize = 20
    a1.sinks.k1.requiredAcks = 1
    
    # channel
    a1.channels.c1.type = memory
    a1.channels.c1.capacity = 1000
    a1.channels.c1.transactionCapacity = 100
    
    # bind
    a1.sources.r1.channels = c1
    a1.sinks.k1.channel = c1
    
  • 进入flume根目录下,启动flume

    /opt/module/flume-1.8.0/bin/flume-ng agent --conf /opt/module/flume-1.8.0/conf/ --name a1 --conf-file /opt/jars/flume2kafka.conf
    

案例八:kafka对接Flume

kafka2flume.conf

agent.sources = kafkaSource
agent.channels = memoryChannel
agent.sinks = hdfsSink

# The channel can be defined as follows.
agent.sources.kafkaSource.channels = memoryChannel
agent.sources.kafkaSource.type=org.apache.flume.source.kafka.KafkaSource
agent.sources.kafkaSource.zookeeperConnect=bigdata111:2181,bigdata112:2181,bigdata113:2181
agent.sources.kafkaSource.topic=calllog
#agent.sources.kafkaSource.groupId=flume
agent.sources.kafkaSource.kafka.consumer.timeout.ms=100


agent.channels.memoryChannel.type=memory
agent.channels.memoryChannel.capacity=10000
agent.channels.memoryChannel.transactionCapacity=1000
agent.channels.memoryChannel.type=memory
agent.channels.memoryChannel.capacity=10000
agent.channels.memoryChannel.transactionCapacity=1000


# the sink of hdfs
agent.sinks.hdfsSink.type=hdfs
agent.sinks.hdfsSink.channel = memoryChannel
agent.sinks.hdfsSink.hdfs.path=hdfs://bigdata111:9000/kafka2flume
agent.sinks.hdfsSink.hdfs.writeFormat=Text
agent.sinks.hdfsSink.hdfs.fileType=DataStream
#这两个不配置,会产生大量的小文件
agent.sinks.hdfsSink.hdfs.rollSize=0
agent.sinks.hdfsSink.hdfs.rollCount=0

启动命令

bin/flume-ng agent --conf conf --conf-file jobconf/kafka2flume.conf --name agent -Dflume.root.logger=INFO,console

注意:这个配置是从kafka过数据,但是需要重新向kafka的topic灌数据,他才会传到HDFS

相关标签: Flume