欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Hadoop MapReduce任务的启动分析

程序员文章站 2022-06-14 17:35:27
...
 
正常情况下,我们都是启动Hadoop任务的方式大概就是通过hadoop jar命令(或者写在shell中),事实上运行的hadoop就是一个包装的.sh,下面就是其中的最后一行,表示在其中执行一个java命令,调用hadoop的一些主类,同时配置一些hadoop的相关CLASSPATH,OPTS等选项:
 
exec "$JAVA" $JAVA_HEAP_MAX $HADOOP_OPTS $CLASS "$@"
 
 
当使用hadoop jar时,调用的$CLASS是下面的类型:
 
org.apache.hadoop.util.RunJar
 
 
而通过hadoop jar调用的主类,必须满足条件:
 
1,其中有main方法,类似下面的定义:
public static void main(String[] args) throws Exception {
    int result = ToolRunner.run(new ThisClass(), args);
    System.exit(result);
}
 
 
2. ToolRunner中的的类需要有如下签名:
 
extends Configured implements Tool
 
并实现其中的public int run方法,在进行必要的hadoop job构造后,执行job的方法,同步等待执行结果并返回即可。
 
boolean success = job2.waitForCompletion(true);
 
 
大体的过程如下,以前也没有对整个过程进行质疑,直到我们有新的需要,在其他的客户端(java,而不是shell中)启动MapReduce任务,顺带好好看了这个函数waitForCompletion...

 

 

public boolean waitForCompletion(boolean verbose
                                 ) throws IOException, InterruptedException,
                                          ClassNotFoundException {
  if (state == JobState.DEFINE) {
    submit();
  }
  if (verbose) {
    monitorAndPrintJob();
  } else {
    // get the completion poll interval from the client.
    int completionPollIntervalMillis = 
      Job.getCompletionPollInterval(cluster.getConf());
    while (!isComplete()) {
      try {
        Thread.sleep(completionPollIntervalMillis);
      } catch (InterruptedException ie) {
      }
    }
  }
  return isSuccessful();
}
 
 
读完源码后发现,其实这个方法主要的目的就是看一下当前job的状态,如果没有提交,那么就执行submit操作(同步)将其提交到集群上。传递的参数verbose,如果是true,就是表示需要检测并打印job的相关信息(使用LOG.info()来打印到console中);否则,就等待任务的complete,反正这是个同步的操作;我们如果不需要监测任务的执行状态,仅仅进行一步submit就可以了。
 
那么就看一下monitorAndPrintJob这个函数吧,核心代码如下:
 
while (!isComplete() || !reportedAfterCompletion) {
  if (isComplete()) {
    reportedAfterCompletion = true;
  } else {
    Thread.sleep(progMonitorPollIntervalMillis);
  }
  if (status.getState() == JobStatus.State.PREP) {
    continue;
  }      
  if (!reportedUberMode) {
    reportedUberMode = true;
    LOG.info("Job " + jobId + " running in uber mode : " + isUber());
  }      
  String report = 
    (" map " + StringUtils.formatPercent(mapProgress(), 0)+
        " reduce " + 
        StringUtils.formatPercent(reduceProgress(), 0));
  if (!report.equals(lastReport)) {
    LOG.info(report);
    lastReport = report;
  }

  TaskCompletionEvent[] events = 
    getTaskCompletionEvents(eventCounter, 10); 
  eventCounter += events.length;
  printTaskEvents(events, filter, profiling, mapRanges, reduceRanges);
}
boolean success = isSuccessful();
if (success) {
  LOG.info("Job " + jobId + " completed successfully");
} else {
  LOG.info("Job " + jobId + " failed with state " + status.getState() + 
      " due to: " + status.getFailureInfo());
}
Counters counters = getCounters();
if (counters != null) {
  LOG.info(counters.toString());
}
return success;
 
其实就是定时循环去报告,检查状态,其中涉及到map和reduce的总体进度(通过某种算法计算出来的百分比),如果报告与上一次有变化,就进行输出。直到任务执行完成,并将其中的所有Counter均打印出来;如果任务失败,打印出任务执行失败的原因。
 
最终,MapReduce的执行日志大概就是这个样子:
 
15/04/13 15:01:08 INFO mapreduce.Job:  map 96% reduce 28%
15/04/13 15:01:09 INFO mapreduce.Job:  map 98% reduce 28%
15/04/13 15:01:10 INFO mapreduce.Job:  map 98% reduce 32%
15/04/13 15:01:13 INFO mapreduce.Job:  map 100% reduce 33%
15/04/13 15:01:16 INFO mapreduce.Job:  map 100% reduce 37%
15/04/13 15:01:19 INFO mapreduce.Job:  map 100% reduce 46%
15/04/13 15:01:22 INFO mapreduce.Job:  map 100% reduce 54%
15/04/13 15:01:25 INFO mapreduce.Job:  map 100% reduce 62%
15/04/13 15:01:28 INFO mapreduce.Job:  map 100% reduce 68%
15/04/13 15:01:31 INFO mapreduce.Job:  map 100% reduce 71%
15/04/13 15:01:34 INFO mapreduce.Job:  map 100% reduce 76%
15/04/13 15:01:35 INFO mapreduce.Job:  map 100% reduce 100%
15/04/13 15:01:37 INFO mapreduce.Job: Job job_1421455790417_222365 completed successfully
15/04/13 15:01:37 INFO mapreduce.Job: Counters: 46
        File System Counters
                FILE: Number of bytes read=70894655
                FILE: Number of bytes written=158829484
                FILE: Number of read operations=0
                FILE: Number of large read operations=0
                FILE: Number of write operations=0
                HDFS: Number of bytes read=5151416348
                HDFS: Number of bytes written=78309
                HDFS: Number of read operations=1091
                HDFS: Number of large read operations=0
                HDFS: Number of write operations=2
        Shuffle Errors
                BAD_ID=0
                CONNECTION=0
                IO_ERROR=0
                WRONG_LENGTH=0
                WRONG_MAP=0
                WRONG_REDUCE=0
 
 
 
如果我们需要将任务执行进度打印出来,就可以对这部分的功能就行改进并重写。
 
如果任务已经提交到集群,可以使用job对象的getTrackingURL()通过页面的形式查看到其具体详情,其中job对象还提供了一些可以操作集群任务的API,包括killTask, failTask等。
 
在任务执行完成后,就可以得到任务的所有Counter,使用Counter来对任务的各项指标进行详细统计是非常易用有效的方式,我们在任务中定义了大量的Counter来进行该操作(包括以后以后可能会评估任务的消耗,以便进行费用统计等…)。
 
如果需要启动多个任务,或以某种依赖的方式启动多个顺序MapReduce任务,可以使用JobControl来链接多个任务,JobControl的run方法,会根据任务的依赖关系来调度整个过程,并提供了一些常用的API,同样可以将任务kill/fail掉。但是如果流程的复杂性稍微比较高的情况下,建议使用一套工作流系统,例如oozie,便于管理以及应对流程上的变化。