pytorch view()、transpose()和permute()的区别
程序员文章站
2022-06-13 15:19:04
...
transpose()和permute()的不同
1、torch.transpose()是交换指定的两个维度的内容,permute()则可以一次性交换多个维度,代码示例如下
a = torch.tensor([[[1, 2, 3, 4], [4, 5, 6, 7]], [[7, 8, 9, 10], [10, 11, 12, 13]], [[13, 14, 15, 16], [17, 18, 19, 20]]])
print(a, a.shape)
结果输出:tensor([[[ 1, 2, 3, 4],
[ 4, 5, 6, 7]],
[[ 7, 8, 9, 10],
[10, 11, 12, 13]],
[[13, 14, 15, 16],
[17, 18, 19, 20]]]) torch.Size([3, 2, 4])
b = a.transpose(1,2)
print(b, b.shape)
结果输出:tensor([[[ 1, 4],
[ 2, 5],
[ 3, 6],
[ 4, 7]],
[[ 7, 10],
[ 8, 11],
[ 9, 12],
[10, 13]],
[[13, 17],
[14, 18],
[15, 19],
[16, 20]]]) torch.Size([3, 4, 2])
c = a.permute(2, 1, 0)
print(c, c.shape)
结果输出:tensor([[[ 1, 7, 13],
[ 4, 10, 17]],
[[ 2, 8, 14],
[ 5, 11, 18]],
[[ 3, 9, 15],
[ 6, 12, 19]],
[[ 4, 10, 16],
[ 7, 13, 20]]]) torch.Size([4, 2, 3])
view和 transpose()、permute()的不同
2、如上所述,transpose和permute是将张量的维度进行变换,而view是将张量拉伸成一维,然后根据传入的维度(也就是想要变换的维度),重构出一个新的张量。代码实例如下所示
a = torch.tensor([[[1, 2, 3, 4], [4, 5, 6, 7]], [[7, 8, 9, 10], [10, 11, 12, 13]], [[13, 14, 15, 16], [17, 18, 19, 20]]])
print(a, a.shape)
结果输出:tensor([[[ 1, 2, 3, 4],
[ 4, 5, 6, 7]],
[[ 7, 8, 9, 10],
[10, 11, 12, 13]],
[[13, 14, 15, 16],
[17, 18, 19, 20]]]) torch.Size([3, 2, 4])
d = a.view(-1, 4)
print(d, d.shape)
结果输出:tensor([[ 1, 2, 3, 4],
[ 4, 5, 6, 7],
[ 7, 8, 9, 10],
[10, 11, 12, 13],
[13, 14, 15, 16],
[17, 18, 19, 20]]) torch.Size([6, 4])
通过以上代码可以看出其区别之处
推荐阅读
-
浅谈pytorch和Numpy的区别以及相互转换方法
-
pytorch中.to(device) 和.cuda()的区别说明
-
Android之View的知识(getWidth() 和getMeasuredWidth区别 如何在oncreate获取宽高)
-
Pytorch中torch.nn和torch.nn.functional的区别及实例详解
-
View中的 postInvalidate 和 invalidate 的区别
-
pytorch小记:nn.ModuleList和nn.Sequential的用法以及区别
-
Android中SurfaceView和普通view的区别及使用
-
Android自定义View5--getWidth()和getMeasuredWidth()区别, view.post(Runnable)引发内存泄漏的原因和解决
-
Pytorch-permute transpose view contiguous
-
Pytorch view() permute() contiguous() transpose()