IO多路复用:select、poll、epoll
I/O多路复用的本质是通过一种机制(系统内核缓冲I/O数据),让单个进程可以监视多个文件描述符,一旦某个描述符就绪(一般是读就绪或写就绪),能够通知程序进行相应的读写操作。
select、poll和epoll都是Linux API提供的IO复用方式,本质是同步IO,因为他们都需要在读写事件就绪后自己负责进行读写,也就是说这个读写过程是阻塞的。(相对比,异步I/O则无需自己负责读写,异步I/O的实现会负责把数据从内核拷贝到用户空间)。
与多进程和多线程技术相比,I/O多路复用技术的最大优势是系统开销小,系统不必创建进程/线程,也不必维护这些进程/线程,从而大大减小了系统的开销。
在介绍select、poll、epoll前,首先介绍下Linux操作系统中基础的概念:
一、基础概念
1.1 用户空间/内核空间
现在操作系统都是采用虚拟存储器,那么对32位操作系统而言,它的寻址空间(虚拟存储空间)为4G(2的32次方)。
操作系统的核心是内核,独立于普通的应用程序,可以访问受保护的内存空间,也有访问底层硬件设备的所有权限。为了保证用户进程不能直接操作内核(kernel),保证内核的安全,操作系统将虚拟空间划分为两部分,一部分为内核空间,一部分为用户空间。
1.2 进程切换
为了控制进程的执行,内核必须有能力挂起正在CPU上运行的进程,并恢复以前挂起的某个进程的执行。这种行为被称为进程切换。因此可以说,任何进程都是在操作系统内核的支持下运行的,是与内核紧密相关的,并且进程切换是非常耗费资源的。
1.3 进程阻塞
正在执行的进程,由于期待的某些事件未发生,如请求系统资源失败、等待某种操作的完成、新数据尚未到达或无新工作做等,则由系统自动执行阻塞原语(Block),使自己由运行状态变为阻塞状态。可见,进程的阻塞是进程自身的一种主动行为,也因此只有处于运行态的进程(获得了CPU资源),才可能将其转为阻塞状态。当进程进入阻塞状态,是不占用CPU资源的。
1.4 文件描述符
文件描述符(File descriptor)是计算机科学中的一个术语,是一个用于表述指向文件的引用的抽象化概念。
文件描述符在形式上是一个非负整数。实际上,它是一个索引值,指向内核为每一个进程所维护的该进程打开文件的记录表。当程序打开一个现有文件或者创建一个新文件时,内核向进程返回一个文件描述符。在程序设计中,一些涉及底层的程序编写往往会围绕着文件描述符展开。但是文件描述符这一概念往往只适用于UNIX、Linux这样的操作系统。
1.5 缓存I/O
缓存I/O又称为标准I/O,大多数文件系统的默认I/O操作都是缓存I/O。在Linux的缓存I/O机制中,操作系统会将I/O的数据缓存在文件系统的页缓存中,即数据会先被拷贝到操作系统内核的缓冲区中,然后才会从操作系统内核的缓冲区拷贝到应用程序的地址空间。
二、select
2.1 函数分析
首先分析下select函数:
int select(int maxfdp1,fd_set *readset,fd_set *writeset,fd_set *exceptset,const struct timeval *timeout);
参数说明:
- int maxfdp1 :指定待测试的文件描述字个数,它的值是待测试的最大描述字加1。
- fd_set *readset , fd_set *writeset , fd_set *exceptset:fd_set可以理解为一个集合,这个集合中存放的是文件描述符(file descriptor),即文件句柄。中间的三个参数指定我们要让内核测试读、写和异常条件的文件描述符集合。如果对某一个的条件不感兴趣,就可以把它设为空指针。
- const struct timeval *timeout :timeout告知内核等待所指定文件描述符集合中的任何一个就绪可花多少时间。其timeval结构用于指定这段时间的秒数和微秒数。
返回值:
若有就绪描述符返回其数目,若超时则为0,若出错则为-1
2.2 运行机制
select()的机制中提供一种fd_set的数据结构,实际上是一个long类型的数组,每一个数组元素都能与一打开的文件句柄(不管是Socket句柄,还是其他文件或命名管道或设备句柄)建立联系,建立联系的工作由程序员完成,当调用select()时,由内核根据IO状态修改fd_set的内容,由此来通知执行了select()的进程哪一Socket或文件可读。
从流程上来看,使用select函数进行IO请求和同步阻塞模型没有太大的区别,甚至还多了添加监视socket,以及调用select函数的额外操作,效率更差。但是,使用select以后最大的优势是用户可以在一个线程内同时处理多个socket的IO请求。用户可以注册多个socket,然后不断地调用select读取被**的socket,即可达到在同一个线程内同时处理多个IO请求的目的。而在同步阻塞模型中,必须通过多线程的方式才能达到这个目的。
2.3 select机制的问题
- 每次调用select,都需要把fd_set集合从用户态拷贝到内核态,如果fd_set集合很大时,那这个开销也很大
- 同时每次调用select都需要在内核遍历传递进来的所有fd_set,如果fd_set集合很大时,那这个开销也很大
- 为了减少数据拷贝带来的性能损坏,内核对被监控的fd_set集合大小做了限制,并且这个是通过宏控制的,大小不可改变。一般来说这个数目和系统内存关系很大,具体数目可以cat /proc/sys/fs/file-max察看。32位机默认是1024个。64位机默认是2048.
三、poll
poll的机制与select类似,与select在本质上没有多大差别,管理多个描述符也是进行轮询,然后查询每个fd对应的设备状态,如果设备就绪则在设备等待队列中加入一项并继续遍历,如果遍历完所有fd后没有发现就绪设备,则挂起当前线程,直到设备就绪或者主动超时,被唤醒后它又要再次遍历fd。这个过程经过了多次无谓的遍历。
但是poll没有最大文件描述符数量的限制。也就是说,poll只解决了上面的问题3,并没有解决问题1,2的性能开销问题。
3.1 函数原型
int poll(struct pollfd *fds, nfds_t nfds, int timeout);
typedef struct pollfd {
int fd; // 需要被检测或选择的文件描述符
short events; // 对文件描述符fd上感兴趣的事件
short revents; // 文件描述符fd上当前实际发生的事件
} pollfd_t;
poll改变了文件描述符集合的描述方式,使用了pollfd结构而不是select的fd_set结构,使得poll支持的文件描述符集合限制远大于select的1024
参数说明:
- *struct pollfd fds:fds是一个struct pollfd类型的数组,用于存放需要检测其状态的socket描述符,并且调用poll函数之后fds数组不会被清空;一个pollfd结构体表示一个被监视的文件描述符,通过传递fds指示 poll() 监视多个文件描述符。其中,结构体的events域是监视该文件描述符的事件掩码,由用户来设置这个域,结构体的revents域是文件描述符的操作结果事件掩码,内核在调用返回时设置这个域
- nfds_t nfds:记录数组fds中描述符的总数量
返回值:
函数返回fds集合中就绪的读、写,或出错的描述符数量,返回0表示超时,返回-1表示出错;
3.2 缺点
- 大量的fd的数组被整体复制于用户态和内核地址空间之间,而不管这样的复制是不是有意义
- poll还有一个特点是“水平触发”,如果报告了fd后,没有被处理,那么下次poll时会再次报告该fd
四、Epoll
epoll在Linux2.6内核正式提出,是基于事件驱动的I/O方式。epoll有EPOLLLT和EPOLLET两种触发模式,LT是默认的模式,ET是“高速”模式。LT模式下,只要这个fd还有数据可读,每次 epoll_wait都会返回它的事件,提醒用户程序去操作,而在ET(边缘触发)模式中,它只会提示一次,直到下次再有数据流入之前都不会再提示了,无 论fd中是否还有数据可读。所以在ET模式下,read一个fd的时候一定要把它的buffer读光,也就是说一直读到read的返回值小于请求值,或者 遇到EAGAIN错误。还有一个特点是,epoll使用“事件”的就绪通知方式,通过epoll_ctl注册fd,一旦该fd就绪,内核就会采用类似callback的回调机制来**该fd,epoll_wait便可以收到通知。
相对于select来说,epoll没有描述符个数限制,使用一个文件描述符管理多个描述符,将用户关心的文件描述符的事件存放到内核的一个事件表中,这样在用户空间和内核空间的copy只需一次。
epoll能显著提高程序在大量并发连接中只有少量活跃的情况下的系统CPU利用率。原因就是获取事件的时候,它无须遍历整个被监听的描述符集,只要遍历那些被内核IO事件异步唤醒而加入Ready队列的描述符集合就行了。
4.1 Linux中提供的epoll相关函数
int epoll_create(int size);
int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event);
int epoll_wait(int epfd, struct epoll_event * events, int maxevents, int timeout);
4.1.1epoll_create
函数创建一个epoll句柄,参数size表明内核要监听的描述符数量。调用成功时返回一个epoll句柄描述符,失败时返回-1.
4.1.2 epoll_ctl
函数注册要监听的事件类型。四个参数解释如下:
- epfd:表示epoll句柄
- op:表示fd操作类型,有三种:EPOLL_CTL_ADD 注册新的fd到epfd中;EPOLL_CTL_MOD 修改已注册的fd的监听事件;EPOLL_CTL_DEL 从epfd中删除一个fd
- fd: 要监听的描述符
- event :表示要监听的事件
epoll_event结构体定义如下:
struct epoll_event {
__uint32_t events; /* Epoll events */
epoll_data_t data; /* User data variable */
};
typedef union epoll_data {
void *ptr;
int fd;
__uint32_t u32;
__uint64_t u64;
} epoll_data_t;
4.1.3 epoll_wait
函数等待事件的就绪,成功时返回就绪的事件数目,调用失败时返回 -1,等待超时返回 0。
- epfd 是epoll句柄
- events 表示从内核得到的就绪事件集合
- maxevents 告诉内核events的大小
- timeout 表示等待的超时事件
4.2 epoll为什么要有EPOLLET触发模式?
- 水平触发(LT):默认工作模式,即当epoll_wait检测到某描述符事件就绪并通知应用程序时,应用程序可以不立即处理该事件;下次调用epoll_wait时,会再次通知此事件
- 边缘触发(ET): 当epoll_wait检测到某描述符事件就绪并通知应用程序时,应用程序必须立即处理该事件。如果不处理,下次调用epoll_wait时,不会再次通知此事件。(直到你做了某些操作导致该描述符变成未就绪状态了,也就是说边缘触发只在状态由未就绪变为就绪时只通知一次)。
如果采用EPOLLLT模式的话,系统中一旦有大量你不需要读写的就绪文件描述符,它们每次调用epoll_wait都会返回,这样会大大降低处理程序检索自己关心的就绪文件描述符的效率.。而采用EPOLLET这种边沿触发模式的话,当被监控的文件描述符上有可读写事件发生时,epoll_wait()会通知处理程序去读写。如果这次没有把数据全部读写完(如读写缓冲区太小),那么下次调用epoll_wait()时,它不会通知你,也就是它只会通知你一次,直到该文件描述符上出现第二次可读写事件才会通知你!!!这种模式比水平触发效率高,系统不会充斥大量你不关心的就绪文件描述符.
边缘触发(Edge Triggered)使得用户空间程序有可能缓存IO状态,减少epoll_wait/epoll_pwait的调用,提高应用程序效率。
ET模式很大程度上减少了epoll事件的触发次数,因此效率比LT模式下高。
4.3 epoll的优点
- 没有最大并发连接的限制,能打开的FD的上限远大于1024(1G的内存上能监听约10万个端口)
- 效率提升,不是轮询的方式,不会随着FD数目的增加效率下降。只有活跃可用的FD才会调用callback函数
- 即Epoll最大的优点就在于它只管你“活跃”的连接,而跟连接总数无关,因此在实际的网络环境中,Epoll的效率就会远远高于select和poll。
- 内存拷贝,利用mmap()文件映射内存加速与内核空间的消息传递;即epoll使用mmap减少复制开销。
五、对比总结
5.1 时间复杂度:
5.1.1 select
时间复杂度为O(n)。它仅仅知道了,有I/O事件发生了,却并不知道是哪几个流(可能有一个、多个、甚至全部),我们只能无差别轮询所有流,找出能读出数据,或者写入数据的流,对他们进行操作。所以select具有O(n)的无差别轮询复杂度,同时处理的流越多,无差别轮询时间就越长。
5.1.2 poll
时间复杂度为O(n)。poll本质上和select没有区别,它将用户传入的数组拷贝到内核空间,然后查询每个fd对应的设备状态, 但是它没有最大连接数的限制,原因是它是基于链表来存储的.
5.1.3 epoll
时间复杂度为O(1)。epoll可以理解为event poll,不同于忙轮询和无差别轮询,epoll会把哪个流发生了怎样的I/O事件通知我们。所以我们说epoll实际上是事件驱动(每个事件关联上fd)的,此时我们对这些流的操作都是有意义的。(复杂度降低到了O(1))
5.2 支持一个进程所能打开的最大连接数
5.2.1 select
单个进程所能打开的最大连接数有FD_SETSIZE宏定义,其大小是32个整数的大小(在32位的机器上,大小就是,同理64位机器上FD_SETSIZE为),当然我们可以对进行修改,然后重新编译内核,但是性能可能会受到影响,这需要进一步的测试。
5.2.2.poll
poll本质上和select没有区别,但是它没有最大连接数的限制,原因是它是基于链表来存储的
5.2.3 epoll
虽然连接数有上限,但是很大,1G内存的机器上可以打开10万左右的连接,2G内存的机器可以打开20万左右的连接
5.3 FD剧增后带来的I/O效率问题
5.3.1 select
因为每次调用时都会对连接进行线性遍历,所以随着FD的增加会造成遍历速度慢的“线性下降性能问题”。
5.3.2 poll
同上
5.3.3 epoll
因为epoll内核中实现是根据每个fd上的callback函数来实现的,只有活跃的socket才会主动调用callback,所以在活跃socket较少的情况下,使用epoll没有前面两者的线性下降的性能问题,但是所有socket都很活跃的情况下,可能会有性能问题。
5.4 消息传递方式
select:内核需要将消息传递到用户空间,都需要内核拷贝动作
poll:同上
epoll:epoll通过内核和用户空间共享一块内存来实现的。
5.5 总结
综上,在选择select,poll,epoll时要根据具体的使用场合以及这三种方式的自身特点。
1、表面上看epoll的性能最好,但是在连接数少并且连接都十分活跃的情况下,select和poll的性能可能比epoll好,毕竟epoll的通知机制需要很多函数回调。
2、select低效是因为每次它都需要轮询。但低效也是相对的,视情况而定,也可通过良好的设计改善
https://www.cnblogs.com/aspirant/p/9166944.html
epoll是Linux目前大规模网络并发程序开发的首选模型。在绝大多数情况下性能远超select和poll。目前流行的高性能web服务器Nginx正式依赖于epoll提供的高效网络套接字轮询服务。但是,在并发连接不高的情况下,多线程+阻塞I/O方式可能性能更好。