欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

第一个MapReduce任务

程序员文章站 2022-03-10 19:17:09
...

    前两天在公司内网上搭了个2个节点hadoop集群,暂时没有多大实际意义,仅用作自己的测试。遇到的问题在阿里巴巴这位仁兄的《Hadoop集群配置和使用技巧 》都有提到的。也遇到了reduce任务卡住的问题,只需要在每个节点的/etc/hosts将集群中的机器都配置上即可解决。
   今天将一个日志统计任务用Hadoop MapReduce框架重新实现了一次,数据量并不大,每天分析一个2G多的日志文件罢了。先前是用Ruby配合cat、grep命令搞定,运行一次在 50多秒左右,如果纯粹采用Ruby的话CPU占用率非常高而且慢的无法忍受,利用IO.popen调用linux的cat、grep命令先期处理就好多 了。看看这个MapReduce任务:

public class GameCount extends Configured implements
        org.apache.hadoop.util.Tool {
    public static class MapClass extends MapReduceBase implements
            Mapper<LongWritable, Text, Text, IntWritable> {

        private Pattern pattern;

        public void configure(JobConf job) {
            String gameName = job.get("mapred.mapper.game");
            pattern = Pattern.compile("play\\sgame\\s" + gameName
                    + ".*uid=(\\d+),score=(-?\\d+),money=(-?\\d+)");
        }

        @Override
        public void map(LongWritable key, Text value,
                OutputCollector<Text, IntWritable> output, Reporter reporter)
                throws IOException {
            String text = value.toString();
            Matcher matcher = pattern.matcher(text);
            int total = 0; // 总次数
            while (matcher.find()) {
                int record = Integer.parseInt(matcher.group(2));
                output.collect(new Text(matcher.group(1)), new IntWritable(
                        record));
                total += 1;
            }
            output.collect(new Text("total"), new IntWritable(total));
        }
    }

    public static class ReduceClass extends MapReduceBase implements
            Reducer<Text, IntWritable, Text, IntWritable> {

        @Override
        public void reduce(Text key, Iterator<IntWritable> values,
                OutputCollector<Text, IntWritable> output, Reporter reporter)
                throws IOException {
            int sum = 0;
            while (values.hasNext()) {
                sum += values.next().get();
            }
            output.collect(key, new IntWritable(sum));
        }

    }

    static int printUsage() {
        System.out
                .println("gamecount [-m <maps>] [-r <reduces>] <input> <output> <gamename>");
        ToolRunner.printGenericCommandUsage(System.out);
        return -1;
    }

    public int run(String[] args) throws Exception {
        JobConf conf = new JobConf(getConf(), GameCount.class);
        conf.setJobName("gamecount");

       conf.setOutputKeyClass(Text.class);
        conf.setOutputValueClass(IntWritable.class);

        conf.setMapperClass(MapClass.class);
        conf.setCombinerClass(ReduceClass.class);
        conf.setReducerClass(ReduceClass.class);

        List<String> other_args = new ArrayList<String>();
        for (int i = 0; i < args.length; ++i) {
            try {
                if ("-m".equals(args[i])) {
                    conf.setNumMapTasks(Integer.parseInt(args[++i]));
                } else if ("-r".equals(args[i])) {
                    conf.setNumReduceTasks(Integer.parseInt(args[++i]));
                } else {
                    other_args.add(args[i]);
                }
            } catch (NumberFormatException except) {
                System.out.println("ERROR: Integer expected instead of "
                        + args[i]);
                return printUsage();
            } catch (ArrayIndexOutOfBoundsException except) {
                System.out.println("ERROR: Required parameter missing from "
                        + args[i - 1]);
                return printUsage();
            }
        }
        // Make sure there are exactly 2 parameters left.
        if (other_args.size() != 3) {
            System.out.println("ERROR: Wrong number of parameters: "
                    + other_args.size() + " instead of 2.");
            return printUsage();
        }
        FileInputFormat.setInputPaths(conf, other_args.get(0));
        FileOutputFormat.setOutputPath(conf, new Path(other_args.get(1)));
        conf.set("mapred.mapper.game", args[2]);
        JobClient.runJob(conf);
        return 0;
    }

    public static void main(String[] args) throws Exception {
        long start = System.nanoTime();
        int res = ToolRunner.run(new Configuration(), new GameCount(), args);
        System.out.println("running time:" + (System.nanoTime() - start)
                / 1000000 + " ms");
        System.exit(res);
    }

}
 

    代码没啥好解释的,就是分析类似"play game DouDiZhu result:uid=1871653,score=-720,money=0"这样的字符串,分析每天玩家玩游戏的次数、分数等。打包成GameCount.jar,执行:

 

hadoop jar GameCount.jar test.GameCount /usr/logs/test.log /usr/output DouDiZhu
 


   统计的运行时间在100多秒,适当增加map和reduce任务个数没有多大改善,不过CPU占用率还是挺高的。