python基础技巧(四)——sklearn
- **函数
tf.sigmoid(x)
tf.tanh(x)
tf.softsign(x)
tf.nn.relu(x)
tf.nn.elu(x)
tf.nn.bias_add(values,bias)
- 损失优化方法
- tf.train.
tf.train.GradientDescentOptimizer(learning_rate=,use_locking=,name=)
tf.train.AdadeltaOptimizer(learning_rate=,use_locking=,name=)
tf.train.AdagradOptimizer(learning_rate=,use_locking=,name=)
tf.train.AdamOptimizer(learning_rate=,use_locking=,name=)
...
-
preprocessing
数据预处理——标准化,均值去除和按方差比例缩放(Standardization, or mean removal and variance scaling)
StandardScaler计算训练集的平均值和标准差,以便测试数据集使用相同的变换。
scale 零均值单位方差
1)若设置with_mean=False 或者 with_std=False,则不做centering 或者scaling处理。
2)scale和StandardScaler可以用于回归模型中的目标值处理。
MinMaxScaler(最小最大值标准化)
MaxAbsScaler(绝对值最大标准化)
各种误差
from sklearn import metrics
metrics.mean_absolute_error(Y_predict,Y_true)
metrics.mean_squared_error(Y_predict,Y_true)
metrics.mean_squared_log_error(Y_predict,Y_true)
metrics.median_absolute_error(Y_predict,Y_true)
...
-
cross_validation
将数据集拆分为训练集和测试集
- train_size=0.7 表示训练集占全集的70%
- test_size=0.2 表示测数据占全集的20%
cross_validation.train_test_split(X,y,train_size=0.7,test_size=0.2)
- sklearn.utils.shuffle
随机排序
*arrays : sequence of indexable data-structures
Indexable data-structures can be arrays, lists, dataframes or scipy sparse matrices with consistent first dimension.
random_state : int, RandomState instance or None, optional (default=None)
The seed of the pseudo random number generator to use when shuffling the data. If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by np.random.
n_samples : int, None by default
Number of samples to generate. If left to None this is automatically set to the first dimension of the arrays.
上一篇: Python3 函数