用Python输出一个杨辉三角的例子
程序员文章站
2022-06-12 21:47:50
关于杨辉三角是什么东西,右转*:杨辉三角
稍微看一下直观一点的图:复制代码 代码如下: 1 1 1 1 2 1 1 3 ...
关于杨辉三角是什么东西,右转*:杨辉三角
稍微看一下直观一点的图:
复制代码 代码如下:
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
1 8 28 56 70 56 28 8 1
杨辉三角有以下几个特点:
每一项的值等于他左上角的数和右上角的数的和,如果左上角或者右上角没有数字,就按0计算。
第n层项数总比n-1层多1个
计算第n层的杨辉三角,必须知道n-1层的数字,然后将相邻2项的数字相加,就能得到下一层除了最边上2个1的所有数字。 听起来有点像递归的思想,我们不妨假设我们已经知道n-1层的数字,来计算一下n层的数字吧。
复制代码 代码如下:
def _yanghui_trangle(n, result):
if n == 1:
return [1]
else:
return [sum(i) for i in zip([0] + result, result + [0])]
上面代码中,result表示n-1层杨辉三角的数字。实习上,我们在列表2端各补了一个0,然后计算相邻项的和,就可以直接得到结果。
稍微完善一下代码:
复制代码 代码如下:
def yanghui_trangle(n):
def _yanghui_trangle(n, result):
if n == 1:
return [1]
else:
return [sum(i) for i in zip([0] + result, result + [0])]
pre_result = []
for i in xrange(n):
pre_result = _yanghui_trangle(i + 1, pre_result)
yield pre_result
if __name__ == "__main__":
for line in yanghui_trangle1(5):
print line
_yanghui_trangle可以用lambda的方式简写,但是可读性感觉会变差,所以还是保持现状好了。
tips: 上面的程序并没有考虑数据格式化的问题,也就是说输出不是完美的三角形。
鉴于最近在学习erlang,补上一个erlang版本的,性能上没有测试过,不过还是要惊叹于函数式语言的表达能力:
复制代码 代码如下:
-module(yanghui).
-author(lfyzjck).
-export([triangle/1]).
triangle_next(p) ->
lists:zipwith(fun(x, y) -> x+y end, [0|p], p ++ [0]).
triangle(1) ->
[[1]];
triangle(n) ->
l = triangle(n - 1),
[h|_] = l,
[triangle_next(h)|l].