欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Pytorch官方教程学习笔记(1)

程序员文章站 2022-06-11 22:00:30
...

Pytorch官方教程学习笔记(1)

注:本教程在pytorch官方教程的基础上修改得到,原教程请点击pytorch_tutorial

%matplotlib inline

What is PyTorch?

It’s a Python-based scientific computing package targeted at two sets of
audiences:

  • A replacement for NumPy to use the power of GPUs
  • a deep learning research platform that provides maximum flexibility
    and speed

Getting Started

Tensors

Tensors are similar to NumPy’s ndarrays, with the addition being that
Tensors can also be used on a GPU to accelerate computing.

from __future__ import print_function
import torch

Construct a 5x3 matrix, uninitialized:

x = torch.empty(5, 3)
print(x)
tensor([[                       0.0000,                        0.0000,
                                0.0000],
        [                       0.0000,                        0.0000,
                                0.0000],
        [-17052573744263721910272.0000,                        0.0000,
                                0.0000],
        [                       0.0000,                        0.0000,
                                0.0000],
        [-17066354759123475628032.0000,                        0.0000,
                                0.0000]])

Construct a randomly initialized matrix:

x = torch.rand(5, 3)
print(x)
tensor([[0.6351, 0.4463, 0.1681],
        [0.6738, 0.3523, 0.2223],
        [0.2257, 0.7201, 0.4833],
        [0.6948, 0.3860, 0.3745],
        [0.4248, 0.7636, 0.7570]])

Construct a matrix filled zeros and of dtype long:

x = torch.zeros(5, 3, dtype=torch.long)
print(x)
tensor([[0, 0, 0],
        [0, 0, 0],
        [0, 0, 0],
        [0, 0, 0],
        [0, 0, 0]])

Construct a tensor directly from data:

x = torch.tensor([5.5, 3])
print(x)
tensor([5.5000, 3.0000])

or create a tensor based on an existing tensor. These methods
will reuse properties of the input tensor, e.g. dtype, unless
new values are provided by user

x = x.new_ones(5, 3, dtype=torch.double)      # new_* methods take in sizes
print(x)

x = torch.randn_like(x, dtype=torch.float)    # override dtype!
print(x)                                      # result has the same size
tensor([[1., 1., 1.],
        [1., 1., 1.],
        [1., 1., 1.],
        [1., 1., 1.],
        [1., 1., 1.]], dtype=torch.float64)
tensor([[ 0.2069,  1.2877, -0.5166],
        [-1.3450,  0.2592,  1.2161],
        [ 0.4427,  0.8569,  0.1560],
        [ 1.1272, -1.3213,  0.9066],
        [-1.0506,  0.3604, -0.4053]])

Get its size:

print(x.size())
torch.Size([5, 3])

torch.Sizeis in fact a tuple, so it supports all tuple operations.

Operations
There are multiple syntaxes for operations. In the following
example, we will take a look at the addition operation.

Addition: syntax 1

y = torch.rand(5, 3)
print(x + y)
tensor([[ 0.6790,  1.6560, -0.2253],
        [-1.1419,  0.2704,  2.1830],
        [ 0.6909,  1.2795,  0.8529],
        [ 1.5204, -0.3262,  1.2432],
        [-1.0165,  0.7596, -0.1896]])

Addition: syntax 2

print(torch.add(x, y))
tensor([[ 0.6790,  1.6560, -0.2253],
        [-1.1419,  0.2704,  2.1830],
        [ 0.6909,  1.2795,  0.8529],
        [ 1.5204, -0.3262,  1.2432],
        [-1.0165,  0.7596, -0.1896]])

Addition: providing an output tensor as argument

result = torch.empty(5, 3)
torch.add(x, y, out=result)
print(result)
tensor([[ 0.6790,  1.6560, -0.2253],
        [-1.1419,  0.2704,  2.1830],
        [ 0.6909,  1.2795,  0.8529],
        [ 1.5204, -0.3262,  1.2432],
        [-1.0165,  0.7596, -0.1896]])

Addition: in-place

# adds x to y
y.add_(x)
print(y)
tensor([[ 0.6790,  1.6560, -0.2253],
        [-1.1419,  0.2704,  2.1830],
        [ 0.6909,  1.2795,  0.8529],
        [ 1.5204, -0.3262,  1.2432],
        [-1.0165,  0.7596, -0.1896]])

Note

Any operation that mutates a tensor in-place is post-fixed with an ``_``. For example: ``x.copy_(y)``, ``x.t_()``, will change ``x``.

You can use standard NumPy-like indexing with all bells and whistles!

print(x[:, 1])
tensor([ 1.2877,  0.2592,  0.8569, -1.3213,  0.3604])

Resizing: If you want to resize/reshape tensor, you can use torch.view:

x = torch.randn(4, 4)
y = x.view(16)
z = x.view(-1, 8)  # the size -1 is inferred from other dimensions
print(x.size(), y.size(), z.size())
torch.Size([4, 4]) torch.Size([16]) torch.Size([2, 8])

If you have a one element tensor, use .item() to get the value as a
Python number

x = torch.randn(1)
print(x)
print(x.item())
tensor([-1.2625])
-1.2625398635864258

Read later:

100+ Tensor operations, including transposing, indexing, slicing,
mathematical operations, linear algebra, random numbers, etc.,
are described
here <http://pytorch.org/docs/torch>_.

NumPy Bridge

Converting a Torch Tensor to a NumPy array and vice versa is a breeze.

The Torch Tensor and NumPy array will share their underlying memory
locations, and changing one will change the other.

Converting a Torch Tensor to a NumPy Array
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

a = torch.ones(5)
print(a)
tensor([1., 1., 1., 1., 1.])
b = a.numpy()
print(b)
[ 1.  1.  1.  1.  1.]

See how the numpy array changed in value.

a.add_(1)
print(a)
print(b)
tensor([2., 2., 2., 2., 2.])
[ 2.  2.  2.  2.  2.]

Converting NumPy Array to Torch Tensor
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
See how changing the np array changed the Torch Tensor automatically

import numpy as np
a = np.ones(5)
b = torch.from_numpy(a)
np.add(a, 1, out=a)
print(a)
print(b)
[ 2.  2.  2.  2.  2.]
tensor([2., 2., 2., 2., 2.], dtype=torch.float64)

All the Tensors on the CPU except a CharTensor support converting to
NumPy and back.

CUDA Tensors

Tensors can be moved onto any device using the .to method.

# let us run this cell only if CUDA is available
# We will use ``torch.device`` objects to move tensors in and out of GPU
if torch.cuda.is_available():
    device = torch.device("cuda")          # a CUDA device object
    y = torch.ones_like(x, device=device)  # directly create a tensor on GPU
    x = x.to(device)                       # or just use strings ``.to("cuda")``
    z = x + y
    print(z)
    print(z.to("cpu", torch.double))       # ``.to`` can also change dtype together!
tensor([-0.2625], device='cuda:0')
tensor([-0.2625], dtype=torch.float64)