欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

PAT甲级1111 Online Map (30分)|C++实现

程序员文章站 2022-06-11 18:03:49
...

一、题目描述

原题链接
Input our current position and a destination, an online map can recommend several paths. Now your job is to recommend two paths to your user: one is the shortest, and the other is the fastest. It is guaranteed that a path exists for any request.

Input Specification:

PAT甲级1111 Online Map (30分)|C++实现

​​Output Specification:

PAT甲级1111 Online Map (30分)|C++实现

Sample Input 1:

10 15
0 1 0 1 1
8 0 0 1 1
4 8 1 1 1
3 4 0 3 2
3 9 1 4 1
0 6 0 1 1
7 5 1 2 1
8 5 1 2 1
2 3 0 2 2
2 1 1 1 1
1 3 0 3 1
1 4 0 1 1
9 7 1 3 1
5 1 0 5 2
6 5 1 1 2
3 5

Sample Output 1:

Distance = 6: 3 -> 4 -> 8 -> 5
Time = 3: 3 -> 1 -> 5

Sample Input 2:

7 9
0 4 1 1 1
1 6 1 1 3
2 6 1 1 1
2 5 1 2 2
3 0 0 1 1
3 1 1 1 3
3 2 1 1 2
4 5 0 2 2
6 5 1 1 2
3 5

Sample Output 2:

Distance = 3; Time = 4: 3 -> 2 -> 5

二、解题思路

这道题不难但是有点复杂,利用了两次DIjkstra算法,还有就是利用pre数组和dfs还原路径。代码很长但是比较易懂,具体细节可参考注释。

三、AC代码

#include<iostream>
#include<cstdio>
#include<vector>
#include<algorithm>
using namespace std;
const int INF = 999999999;
const int maxn = 510;
int dis[maxn], Time[maxn], e[maxn][maxn], w[maxn][maxn], dispre[maxn], Timepre[maxn], weight[maxn], nodeNum[maxn];
bool vis[maxn];
vector<int> dispath, Timepath, temppath;
int st, fin, minnode = INF;
void dfsdispath(int v)  //存放距离最短的路径
{
    dispath.push_back(v);
    if(v == st) return;
    dfsdispath(dispre[v]);
}
void dfsTimepath(int v) //存放时间最短的路径
{
    Timepath.push_back(v);
    if(v == st) return;
    dfsTimepath(Timepre[v]);
}
int main()
{
    fill(dis, dis+maxn, INF);
    fill(Time, Time+maxn, INF);
    fill(weight, weight+maxn, INF);
    fill(e[0], e[0]+maxn*maxn, INF);
    fill(w[0], w[0]+maxn*maxn, INF);
    int n, m;
    scanf("%d%d", &n, &m);
    int a, b, flag, len, t;
    for(int i=0; i<m; i++)
    {
        scanf("%d%d%d%d%d", &a, &b, &flag, &len, &t);
        e[a][b] = len;
        w[a][b] = t;
        if(flag != 1)
        {
            e[b][a] = len;
            w[b][a] = t;
        }
    }
    scanf("%d%d", &st, &fin);   //输入起点终点
    dis[st] = 0;    //初始化起点的距离
    for(int i=0; i<n; i++)  dispre[i] = i;  //初始化dispre数组,每个结点的前一个结点设为自身
    for(int i=0; i<n; i++)  //开始Dijkstra算法
    {
        int u = -1, minn = INF;
        for(int j=0; j<n; j++)  //找到没有访问过的距离最短的结点
        {
            if(!vis[j] && dis[j] < minn)
            {
                u = j;
                minn = dis[j];
            }
        }
        if(u == -1) break;
        vis[u] = true;
        for(int v=0; v<n; v++)
        {
            if(!vis[v] && e[u][v] != INF)
            {
                if(e[u][v] + dis[u] < dis[v])   //更新距离
                {
                    dis[v] = e[u][v] + dis[u];
                    dispre[v] = u;
                    weight[v] = weight[u] + w[u][v];
                }
                else if(e[u][v] + dis[u] == dis[v] && weight[u] + w[u][v] < weight[v])  //距离相等但是时间更短,更新
                {
                    weight[v] = weight[u] + w[u][v];
                    dispre[v] = u;
                }                
            }
        }
    }
    dfsdispath(fin);
    Time[st] = 0;
    fill(vis, vis+maxn, false);
    for(int i=0; i<n; i++)  //Dijkstra算法开始
    {
        int u = -1, minn = INF;
        for(int j=0; j<n; j++)  //找到时间最短的点
        {
            if(!vis[j] && Time[j] < minn)
            {
                u = j;
                minn = Time[j];
            }
        }
        if(u == -1) break;
        vis[u] = true;
        for(int v=0; v<n; v++)
        {
            if(!vis[v] && w[u][v] != INF)
            {
                if(w[u][v] + Time[u] < Time[v])
                {
                    Time[v] = Time[u] + w[u][v];
                    Timepre[v] = u;
                    nodeNum[v] = nodeNum[u] + 1;
                }
                else if(Time[u] + w[u][v] == Time[v] && nodeNum[u]+1 < nodeNum[v])
                {
                    Timepre[v] = u;
                    nodeNum[v] = nodeNum[u] + 1;
                }
            }
        }
    }
    dfsTimepath(fin);   //存放时间最短路径
    printf("Distance = %d", dis[fin]);
    if(dispath == Timepath) printf("; Time = %d: ", Time[fin]); //可以直接判断两vector是否相等
    else
    {
        printf(": ");
        for(int i=dispath.size()-1; i>=0; i--)  //从后往前输出
        {
            printf("%d", dispath[i]);
            if(i!=0)    printf(" -> ");
        }
        printf("\nTime = %d: ", Time[fin]);
    }
    for(int i=Timepath.size() - 1; i>=0; i--)
    {
        printf("%d", Timepath[i]);
        if(i!=0)    printf(" -> ");
    }
    return 0;
}
相关标签: PAT Advanced