欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

ORBSLAM2笔记(2)KeyFrame

程序员文章站 2022-06-11 15:17:06
...

void KeyFrame::SetBadFlag()函数图解
ORBSLAM2笔记(2)KeyFrame

KeyFrame.h

/**
* This file is part of ORB-SLAM2.
*
* Copyright (C) 2014-2016 Raúl Mur-Artal <raulmur at unizar dot es> (University of Zaragoza)
* For more information see <https://github.com/raulmur/ORB_SLAM2>
*
* ORB-SLAM2 is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* ORB-SLAM2 is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with ORB-SLAM2. If not, see <http://www.gnu.org/licenses/>.
*/

#ifndef KEYFRAME_H
#define KEYFRAME_H

#include "MapPoint.h"
#include "Thirdparty/DBoW2/DBoW2/BowVector.h"
#include "Thirdparty/DBoW2/DBoW2/FeatureVector.h"
#include "ORBVocabulary.h"
#include "ORBextractor.h"
#include "Frame.h"
#include "KeyFrameDatabase.h"

#include <mutex>


namespace ORB_SLAM2
{

class Map;
class MapPoint;
class Frame;
class KeyFrameDatabase;


/**
 * 关键帧
 * 重要概念:
 * 1.Covisibility graph共视图:共视关键帧组成的图
 * 2.Spanning tree: Spaning tree是covisibility graph的子集,Spanning Tree中,和当前帧的共视程度最高的就是父节点
 * 3.
 */
class KeyFrame
{
public:
    KeyFrame(Frame &F, Map* pMap, KeyFrameDatabase* pKFDB);

    // Pose functions
    void SetPose(const cv::Mat &Tcw);
    cv::Mat GetPose();
    cv::Mat GetPoseInverse();
    cv::Mat GetCameraCenter();
    cv::Mat GetStereoCenter();
    cv::Mat GetRotation();
    cv::Mat GetTranslation();

    // Bag of Words Representation
    void ComputeBoW();

    // Covisibility graph functions
    void AddConnection(KeyFrame* pKF, const int &weight);
    void EraseConnection(KeyFrame* pKF);
    void UpdateConnections();
    void UpdateBestCovisibles();
    std::set<KeyFrame *> GetConnectedKeyFrames();
    std::vector<KeyFrame* > GetVectorCovisibleKeyFrames();
    std::vector<KeyFrame*> GetBestCovisibilityKeyFrames(const int &N);
    std::vector<KeyFrame*> GetCovisiblesByWeight(const int &w);
    int GetWeight(KeyFrame* pKF);

    // Spanning tree functions
    void AddChild(KeyFrame* pKF);
    void EraseChild(KeyFrame* pKF);
    void ChangeParent(KeyFrame* pKF);
    std::set<KeyFrame*> GetChilds();
    KeyFrame* GetParent();
    bool hasChild(KeyFrame* pKF);

    // Loop Edges
    void AddLoopEdge(KeyFrame* pKF);
    std::set<KeyFrame*> GetLoopEdges();

    // MapPoint observation functions
    void AddMapPoint(MapPoint* pMP, const size_t &idx);
    void EraseMapPointMatch(const size_t &idx);
    void EraseMapPointMatch(MapPoint* pMP);
    void ReplaceMapPointMatch(const size_t &idx, MapPoint* pMP);
    std::set<MapPoint*> GetMapPoints();
    std::vector<MapPoint*> GetMapPointMatches();
    int TrackedMapPoints(const int &minObs);
    MapPoint* GetMapPoint(const size_t &idx);

    // KeyPoint functions
    std::vector<size_t> GetFeaturesInArea(const float &x, const float  &y, const float  &r) const;
    cv::Mat UnprojectStereo(int i);

    // Image
    bool IsInImage(const float &x, const float &y) const;

    // Enable/Disable bad flag changes
    void SetNotErase();
    void SetErase();

    // Set/check bad flag
    void SetBadFlag();
    bool isBad();

    // Compute Scene Depth (q=2 median). Used in monocular.
    ///计算场景的深度中值
    float ComputeSceneMedianDepth(const int q);

    static bool weightComp( int a, int b){
        return a>b;
    }

    static bool lId(KeyFrame* pKF1, KeyFrame* pKF2){
        return pKF1->mnId<pKF2->mnId;
    }


    // The following variables are accesed from only 1 thread or never change (no mutex needed).
public:

    static long unsigned int nNextId;
    long unsigned int mnId;
    const long unsigned int mnFrameId;

    const double mTimeStamp;

    // Grid (to speed up feature matching)
    const int mnGridCols;
    const int mnGridRows;
    const float mfGridElementWidthInv;
    const float mfGridElementHeightInv;

    // Variables used by the tracking
    long unsigned int mnTrackReferenceForFrame;
    long unsigned int mnFuseTargetForKF;

    // Variables used by the local mapping
    long unsigned int mnBALocalForKF;
    long unsigned int mnBAFixedForKF;

    // Variables used by the keyframe database
    long unsigned int mnLoopQuery;
    int mnLoopWords;
    float mLoopScore;
    long unsigned int mnRelocQuery;
    int mnRelocWords;
    float mRelocScore;

    // Variables used by loop closing
    cv::Mat mTcwGBA;
    cv::Mat mTcwBefGBA;
    long unsigned int mnBAGlobalForKF;

    // Calibration parameters
    const float fx, fy, cx, cy, invfx, invfy, mbf, mb, mThDepth;

    // Number of KeyPoints
    const int N;

    // KeyPoints, stereo coordinate and descriptors (all associated by an index)
    const std::vector<cv::KeyPoint> mvKeys;
    const std::vector<cv::KeyPoint> mvKeysUn;
    const std::vector<float> mvuRight; // negative value for monocular points
    const std::vector<float> mvDepth; // negative value for monocular points
    const cv::Mat mDescriptors;

    //BoW
    DBoW2::BowVector mBowVec;
    /// std::map<NodeId, std::vector<unsigned int> >
    DBoW2::FeatureVector mFeatVec;

    // Pose relative to parent (this is computed when bad flag is activated)
    cv::Mat mTcp;

    // Scale
    const int mnScaleLevels;
    const float mfScaleFactor;
    const float mfLogScaleFactor;
    const std::vector<float> mvScaleFactors;
    const std::vector<float> mvLevelSigma2;
    const std::vector<float> mvInvLevelSigma2;

    // Image bounds and calibration
    const int mnMinX;
    const int mnMinY;
    const int mnMaxX;
    const int mnMaxY;
    const cv::Mat mK;


    // The following variables need to be accessed trough a mutex to be thread safe.
protected:

    // SE3 Pose and camera center
    cv::Mat Tcw;
    cv::Mat Twc;
    cv::Mat Ow;

    cv::Mat Cw; // Stereo middel point. Only for visualization

    // MapPoints associated to keypoints
    std::vector<MapPoint*> mvpMapPoints;

    // BoW
    KeyFrameDatabase* mpKeyFrameDB;
    ORBVocabulary* mpORBvocabulary;

    // Grid over the image to speed up feature matching
    std::vector< std::vector <std::vector<size_t> > > mGrid;

    ///key frame and it's weight
    std::map<KeyFrame*,int> mConnectedKeyFrameWeights;
    ///经过排列之后的从covisibility graph
    std::vector<KeyFrame*> mvpOrderedConnectedKeyFrames;
    ///从小到大排列的权重
    std::vector<int> mvOrderedWeights;

    // Spanning Tree and Loop Edges
    bool mbFirstConnection;
    KeyFrame* mpParent;
    std::set<KeyFrame*> mspChildrens;
    std::set<KeyFrame*> mspLoopEdges;

    // Bad flags
    bool mbNotErase;
    bool mbToBeErased;
    bool mbBad;    

    float mHalfBaseline; // Only for visualization

    Map* mpMap;

    std::mutex mMutexPose;
    std::mutex mMutexConnections;
    std::mutex mMutexFeatures;
};

} //namespace ORB_SLAM

#endif // KEYFRAME_H

/**
* This file is part of ORB-SLAM2.
*
* Copyright (C) 2014-2016 Raúl Mur-Artal <raulmur at unizar dot es> (University of Zaragoza)
* For more information see <https://github.com/raulmur/ORB_SLAM2>
*
* ORB-SLAM2 is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* ORB-SLAM2 is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with ORB-SLAM2. If not, see <http://www.gnu.org/licenses/>.
*/

#include "KeyFrame.h"
#include "Converter.h"
#include "ORBmatcher.h"
#include<mutex>

namespace ORB_SLAM2
{

long unsigned int KeyFrame::nNextId=0;

KeyFrame::KeyFrame(Frame &F, Map *pMap, KeyFrameDatabase *pKFDB):
    mnFrameId(F.mnId),  mTimeStamp(F.mTimeStamp), mnGridCols(FRAME_GRID_COLS), mnGridRows(FRAME_GRID_ROWS),
    mfGridElementWidthInv(F.mfGridElementWidthInv), mfGridElementHeightInv(F.mfGridElementHeightInv),
    mnTrackReferenceForFrame(0), mnFuseTargetForKF(0), mnBALocalForKF(0), mnBAFixedForKF(0),
    mnLoopQuery(0), mnLoopWords(0), mnRelocQuery(0), mnRelocWords(0), mnBAGlobalForKF(0),
    fx(F.fx), fy(F.fy), cx(F.cx), cy(F.cy), invfx(F.invfx), invfy(F.invfy),
    mbf(F.mbf), mb(F.mb), mThDepth(F.mThDepth), N(F.N), mvKeys(F.mvKeys), mvKeysUn(F.mvKeysUn),
    mvuRight(F.mvuRight), mvDepth(F.mvDepth), mDescriptors(F.mDescriptors.clone()),
    mBowVec(F.mBowVec), mFeatVec(F.mFeatVec), mnScaleLevels(F.mnScaleLevels), mfScaleFactor(F.mfScaleFactor),
    mfLogScaleFactor(F.mfLogScaleFactor), mvScaleFactors(F.mvScaleFactors), mvLevelSigma2(F.mvLevelSigma2),
    mvInvLevelSigma2(F.mvInvLevelSigma2), mnMinX(F.mnMinX), mnMinY(F.mnMinY), mnMaxX(F.mnMaxX),
    mnMaxY(F.mnMaxY), mK(F.mK), mvpMapPoints(F.mvpMapPoints), mpKeyFrameDB(pKFDB),
    mpORBvocabulary(F.mpORBvocabulary), mbFirstConnection(true), mpParent(NULL), mbNotErase(false),
    mbToBeErased(false), mbBad(false), mHalfBaseline(F.mb/2), mpMap(pMap)
{
    mnId=nNextId++;

    mGrid.resize(mnGridCols);
    for(int i=0; i<mnGridCols;i++)
    {
        mGrid[i].resize(mnGridRows);
        for(int j=0; j<mnGridRows; j++)
            mGrid[i][j] = F.mGrid[i][j];
    }

    SetPose(F.mTcw);    
}

/// compute keyframe's descriptors and insert into ORB vocabulary
void KeyFrame::ComputeBoW()
{
    if(mBowVec.empty() || mFeatVec.empty())
    {
        vector<cv::Mat> vCurrentDesc = Converter::toDescriptorVector(mDescriptors);
        // Feature vector associate features with nodes in the 4th level (from leaves up)
        // We assume the vocabulary tree has 6 levels, change the 4 otherwise
        mpORBvocabulary->transform(vCurrentDesc,mBowVec,mFeatVec,4);
    }
}

void KeyFrame::SetPose(const cv::Mat &Tcw_)
{
    unique_lock<mutex> lock(mMutexPose);
    Tcw_.copyTo(Tcw);
    cv::Mat Rcw = Tcw.rowRange(0,3).colRange(0,3);
    cv::Mat tcw = Tcw.rowRange(0,3).col(3);
    cv::Mat Rwc = Rcw.t();
    Ow = -Rwc*tcw;

    Twc = cv::Mat::eye(4,4,Tcw.type());
    Rwc.copyTo(Twc.rowRange(0,3).colRange(0,3));
    Ow.copyTo(Twc.rowRange(0,3).col(3));
    cv::Mat center = (cv::Mat_<float>(4,1) << mHalfBaseline, 0 , 0, 1);
    Cw = Twc*center;
}

cv::Mat KeyFrame::GetPose()
{
    unique_lock<mutex> lock(mMutexPose);
    return Tcw.clone();
}

cv::Mat KeyFrame::GetPoseInverse()
{
    unique_lock<mutex> lock(mMutexPose);
    return Twc.clone();
}

cv::Mat KeyFrame::GetCameraCenter()
{
    unique_lock<mutex> lock(mMutexPose);
    return Ow.clone();
}

cv::Mat KeyFrame::GetStereoCenter()
{
    unique_lock<mutex> lock(mMutexPose);
    return Cw.clone();
}


cv::Mat KeyFrame::GetRotation()
{
    unique_lock<mutex> lock(mMutexPose);
    return Tcw.rowRange(0,3).colRange(0,3).clone();
}

cv::Mat KeyFrame::GetTranslation()
{
    unique_lock<mutex> lock(mMutexPose);
    return Tcw.rowRange(0,3).col(3).clone();
}


void KeyFrame::AddConnection(KeyFrame *pKF, const int &weight)
{
    ///将新的关键帧和权重加入到共视图中
    {
        unique_lock<mutex> lock(mMutexConnections);
        if(!mConnectedKeyFrameWeights.count(pKF))
            mConnectedKeyFrameWeights[pKF]=weight;
        else if(mConnectedKeyFrameWeights[pKF]!=weight)
            mConnectedKeyFrameWeights[pKF]=weight;
        else
            return;
    }

    ///更新共视图
    UpdateBestCovisibles();
}

///将mConnectedKeyFrameWeights中的关键帧和权重提取出来放入vector,然后按照权重从小到大进行排列
///分别将关键帧和权重储存到mvpOrderedConnectedKeyFrames和mvOrderedWeights中
void KeyFrame::UpdateBestCovisibles()
{
    unique_lock<mutex> lock(mMutexConnections);
    vector<pair<int,KeyFrame*> > vPairs;
    vPairs.reserve(mConnectedKeyFrameWeights.size());
    for(map<KeyFrame*,int>::iterator mit=mConnectedKeyFrameWeights.begin(), mend=mConnectedKeyFrameWeights.end(); mit!=mend; mit++)
       vPairs.push_back(make_pair(mit->second,mit->first));

    sort(vPairs.begin(),vPairs.end());
    list<KeyFrame*> lKFs;
    list<int> lWs;
    for(size_t i=0, iend=vPairs.size(); i<iend;i++)
    {
        lKFs.push_front(vPairs[i].second);
        lWs.push_front(vPairs[i].first);
    }

    mvpOrderedConnectedKeyFrames = vector<KeyFrame*>(lKFs.begin(),lKFs.end());
    mvOrderedWeights = vector<int>(lWs.begin(), lWs.end());    
}

set<KeyFrame*> KeyFrame::GetConnectedKeyFrames()
{
    unique_lock<mutex> lock(mMutexConnections);
    set<KeyFrame*> s;
    for(map<KeyFrame*,int>::iterator mit=mConnectedKeyFrameWeights.begin();mit!=mConnectedKeyFrameWeights.end();mit++)
        s.insert(mit->first);
    return s;
}

vector<KeyFrame*> KeyFrame::GetVectorCovisibleKeyFrames()
{
    unique_lock<mutex> lock(mMutexConnections);
    return mvpOrderedConnectedKeyFrames;
}

vector<KeyFrame*> KeyFrame::GetBestCovisibilityKeyFrames(const int &N)
{
    unique_lock<mutex> lock(mMutexConnections);
    if((int)mvpOrderedConnectedKeyFrames.size()<N)
        return mvpOrderedConnectedKeyFrames;
    else
        return vector<KeyFrame*>(mvpOrderedConnectedKeyFrames.begin(),mvpOrderedConnectedKeyFrames.begin()+N);

}

vector<KeyFrame*> KeyFrame::GetCovisiblesByWeight(const int &w)
{
    unique_lock<mutex> lock(mMutexConnections);

    if(mvpOrderedConnectedKeyFrames.empty())
        return vector<KeyFrame*>();

    vector<int>::iterator it = upper_bound(mvOrderedWeights.begin(),mvOrderedWeights.end(),w,KeyFrame::weightComp);
    if(it==mvOrderedWeights.end())
        return vector<KeyFrame*>();
    else
    {
        int n = it-mvOrderedWeights.begin();
        return vector<KeyFrame*>(mvpOrderedConnectedKeyFrames.begin(), mvpOrderedConnectedKeyFrames.begin()+n);
    }
}

int KeyFrame::GetWeight(KeyFrame *pKF)
{
    unique_lock<mutex> lock(mMutexConnections);
    if(mConnectedKeyFrameWeights.count(pKF))
        return mConnectedKeyFrameWeights[pKF];
    else
        return 0;
}

void KeyFrame::AddMapPoint(MapPoint *pMP, const size_t &idx)
{
    unique_lock<mutex> lock(mMutexFeatures);
    mvpMapPoints[idx]=pMP;
}

void KeyFrame::EraseMapPointMatch(const size_t &idx)
{
    unique_lock<mutex> lock(mMutexFeatures);
    mvpMapPoints[idx]=static_cast<MapPoint*>(NULL);
}

void KeyFrame::EraseMapPointMatch(MapPoint* pMP)
{
    int idx = pMP->GetIndexInKeyFrame(this);
    if(idx>=0)
        mvpMapPoints[idx]=static_cast<MapPoint*>(NULL);
}


void KeyFrame::ReplaceMapPointMatch(const size_t &idx, MapPoint* pMP)
{
    mvpMapPoints[idx]=pMP;
}

set<MapPoint*> KeyFrame::GetMapPoints()
{
    unique_lock<mutex> lock(mMutexFeatures);
    set<MapPoint*> s;
    for(size_t i=0, iend=mvpMapPoints.size(); i<iend; i++)
    {
        if(!mvpMapPoints[i])
            continue;
        MapPoint* pMP = mvpMapPoints[i];
        if(!pMP->isBad())
            s.insert(pMP);
    }
    return s;
}

///统计被追踪到的地图点,当地图点的观测帧的数目大于等于minObs,被认为已经追踪到了该地图点
int KeyFrame::TrackedMapPoints(const int &minObs)
{
    unique_lock<mutex> lock(mMutexFeatures);

    int nPoints=0;
    const bool bCheckObs = minObs>0;
    for(int i=0; i<N; i++)
    {
        MapPoint* pMP = mvpMapPoints[i];
        if(pMP)
        {
            if(!pMP->isBad())
            {
                if(bCheckObs)
                {
                    if(mvpMapPoints[i]->Observations()>=minObs)
                        nPoints++;
                }
                else
                    nPoints++;
            }
        }
    }

    return nPoints;
}

vector<MapPoint*> KeyFrame::GetMapPointMatches()
{
    unique_lock<mutex> lock(mMutexFeatures);
    return mvpMapPoints;
}

MapPoint* KeyFrame::GetMapPoint(const size_t &idx)
{
    unique_lock<mutex> lock(mMutexFeatures);
    return mvpMapPoints[idx];
}

/**
 * 更新共视图的关系
 * 统计当前帧和其它帧之间的共视3D点的数目,如果大于一定阈值,就在两个关键帧之间增加一条共视边
 */
void KeyFrame::UpdateConnections()
{
    ///和当前关键帧有共视关系的关键帧以及共视点的数目
    map<KeyFrame*,int> KFcounter;

    ///取出所有的MapPoint
    vector<MapPoint*> vpMP;

    {
        unique_lock<mutex> lockMPs(mMutexFeatures);
        vpMP = mvpMapPoints;
    }

    //For all map points in keyframe check in which other keyframes are they seen
    //Increase counter for those keyframes
    /**
     * 1.获取当前关键帧的所有MapPoint,并进行遍历;
     * 2.遍历得到每个MapPoint的观测帧,统计其它帧和当前帧的共视点的数目,并储存在KFcounter中.
     **/
    for(vector<MapPoint*>::iterator vit=vpMP.begin(), vend=vpMP.end(); vit!=vend; vit++)
    {
        MapPoint* pMP = *vit;

        if(!pMP)
            continue;

        if(pMP->isBad())
            continue;

        ///获取MapPoint的所有的观测帧
        map<KeyFrame*,size_t> observations = pMP->GetObservations();

        ///遍历观测到该点的观测帧
        for(map<KeyFrame*,size_t>::iterator mit=observations.begin(), mend=observations.end(); mit!=mend; mit++)
        {
            if(mit->first->mnId==mnId)
                continue;
            KFcounter[mit->first]++;
        }
    }

    // This should not happen
    ///该帧和其它帧没有共视关系
    if(KFcounter.empty())
        return;

    //If the counter is greater than threshold add connection
    //In case no keyframe counter is over threshold add the one with maximum counter
    ///如果其它帧和当前帧的共视的MapPoint的数目大于15,那么就增加一条共视边;
    ///为了防止没有超过达到阈值的关键帧,添加拥有最多共视MapPoint的帧作为共视边
    int nmax=0;
    KeyFrame* pKFmax=NULL;
    int th = 15;

    vector<pair<int,KeyFrame*> > vPairs;
    vPairs.reserve(KFcounter.size());
    for(map<KeyFrame*,int>::iterator mit=KFcounter.begin(), mend=KFcounter.end(); mit!=mend; mit++)
    {
        if(mit->second>nmax)
        {
            nmax=mit->second;
            pKFmax=mit->first;
        }
        if(mit->second>=th)
        {
            vPairs.push_back(make_pair(mit->second,mit->first));
            (mit->first)->AddConnection(this,mit->second);
        }
    }

    if(vPairs.empty())
    {
        vPairs.push_back(make_pair(nmax,pKFmax));
        pKFmax->AddConnection(this,nmax);
    }

    ///根据共视程度进行从小大小的排列
    sort(vPairs.begin(),vPairs.end());
    list<KeyFrame*> lKFs;
    list<int> lWs;
    //权重大的放前面
    for(size_t i=0; i<vPairs.size();i++)
    {
        lKFs.push_front(vPairs[i].second);
        lWs.push_front(vPairs[i].first);
    }

    {
        unique_lock<mutex> lockCon(mMutexConnections);

        // mspConnectedKeyFrames = spConnectedKeyFrames;
        mConnectedKeyFrameWeights = KFcounter;
        mvpOrderedConnectedKeyFrames = vector<KeyFrame*>(lKFs.begin(),lKFs.end());
        mvOrderedWeights = vector<int>(lWs.begin(), lWs.end());

        if(mbFirstConnection && mnId!=0)
        {
            ///和当前关键帧共视程度最高的帧作为spanning tree的父节点
            mpParent = mvpOrderedConnectedKeyFrames.front();
            mpParent->AddChild(this);
            mbFirstConnection = false;
        }

    }
}

void KeyFrame::AddChild(KeyFrame *pKF)
{
    unique_lock<mutex> lockCon(mMutexConnections);
    mspChildrens.insert(pKF);
}

void KeyFrame::EraseChild(KeyFrame *pKF)
{
    unique_lock<mutex> lockCon(mMutexConnections);
    mspChildrens.erase(pKF);
}

///换一个爸爸节点
void KeyFrame::ChangeParent(KeyFrame *pKF)
{
    unique_lock<mutex> lockCon(mMutexConnections);
    mpParent = pKF;
    pKF->AddChild(this);
}

///获取子节点
set<KeyFrame*> KeyFrame::GetChilds()
{
    unique_lock<mutex> lockCon(mMutexConnections);
    return mspChildrens;
}

KeyFrame* KeyFrame::GetParent()
{
    unique_lock<mutex> lockCon(mMutexConnections);
    return mpParent;
}

bool KeyFrame::hasChild(KeyFrame *pKF)
{
    unique_lock<mutex> lockCon(mMutexConnections);
    return mspChildrens.count(pKF);
}


///在当前帧和pKF帧之间添加一条回环的边
void KeyFrame::AddLoopEdge(KeyFrame *pKF)
{
    unique_lock<mutex> lockCon(mMutexConnections);
    mbNotErase = true;
    mspLoopEdges.insert(pKF);
}

set<KeyFrame*> KeyFrame::GetLoopEdges()
{
    unique_lock<mutex> lockCon(mMutexConnections);
    return mspLoopEdges;
}

void KeyFrame::SetNotErase()
{
    unique_lock<mutex> lock(mMutexConnections);
    mbNotErase = true;
}

void KeyFrame::SetErase()
{
    {
        unique_lock<mutex> lock(mMutexConnections);
        if(mspLoopEdges.empty())
        {
            mbNotErase = false;
        }
    }

    if(mbToBeErased)
    {
        SetBadFlag();
    }
}

/**
 * 设置当前关键帧badflag,这个函数主要处理当需要剔除某些关键帧的时候,
 * 如何更新这个关键帧和其它关键帧的共视关系.
 * 
 */
void KeyFrame::SetBadFlag()
{   
    {
        unique_lock<mutex> lock(mMutexConnections);
        if(mnId==0)
            return;
        else if(mbNotErase)
        {
            mbToBeErased = true;
            return;
        }
    }

    ///1.遍历和该帧有共视关系的所有帧,删除和它们和该帧的共视关系
    for(map<KeyFrame*,int>::iterator mit = mConnectedKeyFrameWeights.begin(), mend=mConnectedKeyFrameWeights.end(); mit!=mend; mit++)
        mit->first->EraseConnection(this);

    ///2.遍历该关键帧的所有MapPoint,该帧的不再作为相应MapPoint的观测帧
    for(size_t i=0; i<mvpMapPoints.size(); i++)
        if(mvpMapPoints[i])
            mvpMapPoints[i]->EraseObservation(this);
    
    {
        unique_lock<mutex> lock(mMutexConnections);
        unique_lock<mutex> lock1(mMutexFeatures);

        ///清除其共视图和权重
        mConnectedKeyFrameWeights.clear();
        mvpOrderedConnectedKeyFrames.clear();

        // Update Spanning Tree
        ///候选父节点
        set<KeyFrame*> sParentCandidates;
        ///将当前帧的父节点加入候选父节点
        sParentCandidates.insert(mpParent);

        // Assign at each iteration one children with a parent (the pair with highest covisibility weight)
        // Include that children as new parent candidate for the rest
        ///3.每次处理一个child节点,给这个child节点寻找一个与其共视程度最高的新父节点
        while(!mspChildrens.empty())
        {
            bool bContinue = false;

            int max = -1;
            KeyFrame* pC;///pointer to Child Key Frame
            KeyFrame* pP; /// pointer to Parent Key Frame

            ///4.遍历这个关键帧的所有子节点,给每个子节点重新找一个共视程度最高的父节点
            for(set<KeyFrame*>::iterator sit=mspChildrens.begin(), send=mspChildrens.end(); sit!=send; sit++)
            {
                ///取出一个子节点
                KeyFrame* pKF = *sit;
                if(pKF->isBad())
                    continue;

                // Check if a parent candidate is connected to the keyframe
                ///找出该子节点的所有共视帧
                vector<KeyFrame*> vpConnected = pKF->GetVectorCovisibleKeyFrames();
                ///5.遍历共视帧
                for(size_t i=0, iend=vpConnected.size(); i<iend; i++)
                {
                    ///6.遍历候选父节点
                    for(set<KeyFrame*>::iterator spcit=sParentCandidates.begin(), spcend=sParentCandidates.end(); spcit!=spcend; spcit++)
                    {
                        ///7.如果子节点的共视帧恰好是候选父节点帧
                        if(vpConnected[i]->mnId == (*spcit)->mnId)
                        {
                            int w = pKF->GetWeight(vpConnected[i]);
                            if(w>max)
                            {
                                pC = pKF;
                                pP = vpConnected[i];
                                max = w;
                                bContinue = true;
                            }
                        }
                    }
                }
            } ///for loop every child

            if(bContinue)
            {
                ///8.子节点找到新的父节点,就换成新的父节点
                pC->ChangeParent(pP);
                ///9.将新的子节点作为候选的父节点
                sParentCandidates.insert(pC);
                ///10.当前子节点不再作为当前帧的子节点
                mspChildrens.erase(pC);
            }
            else
                break;
        }//while

        // 11.If a children has no covisibility links with any parent candidate, assign to the original parent of this KF
        if(!mspChildrens.empty())
            for(set<KeyFrame*>::iterator sit=mspChildrens.begin(); sit!=mspChildrens.end(); sit++)
            {
                (*sit)->ChangeParent(mpParent);
            }

        mpParent->EraseChild(this);
        mTcp = Tcw*mpParent->GetPoseInverse();
        mbBad = true;
    }


    ///在地图中删除该关键帧
    mpMap->EraseKeyFrame(this);
    ///在关键帧数据库中删除该关键帧
    mpKeyFrameDB->erase(this);
}

bool KeyFrame::isBad()
{
    unique_lock<mutex> lock(mMutexConnections);
    return mbBad;
}

///删除当前帧和pKF帧的共视关系
void KeyFrame::EraseConnection(KeyFrame* pKF)
{
    bool bUpdate = false;
    {
        unique_lock<mutex> lock(mMutexConnections);
        if(mConnectedKeyFrameWeights.count(pKF))
        {
            mConnectedKeyFrameWeights.erase(pKF);
            bUpdate=true;
        }
    }

    if(bUpdate)
        UpdateBestCovisibles();
}

///获取以x,y为矩形中心,r为矩形边长范围内的特征点
vector<size_t> KeyFrame::GetFeaturesInArea(const float &x, const float &y, const float &r) const
{
    vector<size_t> vIndices;
    vIndices.reserve(N);

    const int nMinCellX = max(0,(int)floor((x-mnMinX-r)*mfGridElementWidthInv));
    if(nMinCellX>=mnGridCols)
        return vIndices;

    const int nMaxCellX = min((int)mnGridCols-1,(int)ceil((x-mnMinX+r)*mfGridElementWidthInv));
    if(nMaxCellX<0)
        return vIndices;

    const int nMinCellY = max(0,(int)floor((y-mnMinY-r)*mfGridElementHeightInv));
    if(nMinCellY>=mnGridRows)
        return vIndices;

    const int nMaxCellY = min((int)mnGridRows-1,(int)ceil((y-mnMinY+r)*mfGridElementHeightInv));
    if(nMaxCellY<0)
        return vIndices;

    for(int ix = nMinCellX; ix<=nMaxCellX; ix++)
    {
        for(int iy = nMinCellY; iy<=nMaxCellY; iy++)
        {
            const vector<size_t> vCell = mGrid[ix][iy];
            for(size_t j=0, jend=vCell.size(); j<jend; j++)
            {
                const cv::KeyPoint &kpUn = mvKeysUn[vCell[j]];
                const float distx = kpUn.pt.x-x;
                const float disty = kpUn.pt.y-y;

                if(fabs(distx)<r && fabs(disty)<r)
                    vIndices.push_back(vCell[j]);
            }
        }
    }

    return vIndices;
}

bool KeyFrame::IsInImage(const float &x, const float &y) const
{
    return (x>=mnMinX && x<mnMaxX && y>=mnMinY && y<mnMaxY);
}

cv::Mat KeyFrame::UnprojectStereo(int i)
{
    const float z = mvDepth[i];
    if(z>0)
    {
        const float u = mvKeys[i].pt.x;
        const float v = mvKeys[i].pt.y;
        const float x = (u-cx)*z*invfx;
        const float y = (v-cy)*z*invfy;
        cv::Mat x3Dc = (cv::Mat_<float>(3,1) << x, y, z);

        unique_lock<mutex> lock(mMutexPose);
        return Twc.rowRange(0,3).colRange(0,3)*x3Dc+Twc.rowRange(0,3).col(3);
    }
    else
        return cv::Mat();
}

float KeyFrame::ComputeSceneMedianDepth(const int q)
{
    ///获取当前关键帧的所有MapPoint
    vector<MapPoint*> vpMapPoints;
    cv::Mat Tcw_;
    {
        unique_lock<mutex> lock(mMutexFeatures);
        unique_lock<mutex> lock2(mMutexPose);
        vpMapPoints = mvpMapPoints;
        Tcw_ = Tcw.clone();
    }

    ///将所有的MapPoint转换到相机坐标系,并将深度信息储存到vDepths中
    vector<float> vDepths;
    vDepths.reserve(N);
    cv::Mat Rcw2 = Tcw_.row(2).colRange(0,3);
    Rcw2 = Rcw2.t();
    float zcw = Tcw_.at<float>(2,3);
    for(int i=0; i<N; i++)
    {
        if(mvpMapPoints[i])
        {
            MapPoint* pMP = mvpMapPoints[i];
            /// map point's 3D pose
            cv::Mat x3Dw = pMP->GetWorldPos();
            /// translate to camera frame
            float z = Rcw2.dot(x3Dw)+zcw;
            vDepths.push_back(z);
        }
    }

    ///按照大小排列
    sort(vDepths.begin(),vDepths.end());

    ///q=2,则意味着取中值
    return vDepths[(vDepths.size()-1)/q];
}

} //namespace ORB_SLAM

相关标签: ORBSLAM2