欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

简单python代码实现三层神经网络识别手写数字

程序员文章站 2022-03-10 15:32:31
...

准备

这个过程非常简单,就是用到了很多的矩阵运算。

数据格式

.csv格式数据的每一行都是一个28*28像素的手写数字图片,每一行的第一个像素是数字的值,从第二个数字开始时像素值

 

import matplotlib.pyplot
import pylab
import numpy

# 读入训练数据
training_data_file = open("G:\神经网络数据\mnist_train.csv", "r")
training_data_list = training_data_file.readlines()
training_data_file.close()
# 图片展示
aist = training_data_list[1].split(",")
aist = numpy.asfarray(aist[1:]).reshape((28, 28))
matplotlib.pyplot.imshow(aist, interpolation="nearest")
pylab.show()

简单python代码实现三层神经网络识别手写数字

效果图展示

神经网络代码

  1. 对象

 

import numpy
import scipy.special


class NeuralNetWork:
    # 初始化
    def __init__(self, inputnodfes, hiddennodes, outputnodes, learningrate):
        self.innodes = inputnodfes
        self.hnodes = hiddennodes
        self.onodes = outputnodes
        self.lr = learningrate
        self.wih = numpy.random.normal(0.0, pow(self.innodes, -0.5), (self.hnodes, self.innodes))
        self.who = numpy.random.normal(0.0, pow(self.hnodes, -0.5), (self.onodes, self.hnodes))
        # 抑制函数
        self.activation_function = lambda x: scipy.special.expit(x)
        pass

     # 训练
    def train(self, inputs_list, targets_list):
        inputs = numpy.array(inputs_list, ndmin=2).T
        targets = numpy.array(targets_list, ndmin=2).T
        hidden_inputs = numpy.dot(self.wih, inputs)
        hidden_outputs = self.activation_function(hidden_inputs)
        final_inputs = numpy.dot(self.who, hidden_outputs)
        final_outputs = self.activation_function(final_inputs)
        output_errors = targets - final_outputs
        hidden_errors = numpy.dot(self.who.T, output_errors)
        self.who += self.lr * numpy.dot((output_errors * final_outputs * (1.0 - final_outputs)),
                                        numpy.transpose(hidden_outputs))
        self.wih += self.lr * numpy.dot((hidden_errors * hidden_outputs * (1.0 - hidden_outputs)),
                                        numpy.transpose(inputs))
        pass

    # 测试
    def query(self, inputs_list):
        inputs = numpy.array(inputs_list, ndmin=2).T
        hidden_inputs = numpy.dot(self.wih, inputs)
        hidden_outputs = self.activation_function(hidden_inputs)
        final_inputs = numpy.dot(self.who, hidden_outputs)
        final_outputs = self.activation_function(final_inputs)
        return final_outputs

  1. 训练和测试代码

 

import numpy

from neuralNetwork import NeuralNetWork


input_nodes = 784
hidden_nodes = 100
output_nodes = 10
learning_rate = 0.2

# 读入训练数据
training_data_file = open("G:\神经网络数据\mnist_train.csv", "r")
training_data_list = training_data_file.readlines()
training_data_file.close()
# 初始化神经网络
b = NeuralNetWork(input_nodes, hidden_nodes, output_nodes, learning_rate)

for record in training_data_list:
    all_values = record.split(',')
    inputs = (numpy.asfarray(all_values[1:]) / 255.0 * 0.9) + 0.01
    targets = numpy.zeros(output_nodes) + 0.01
    targets[int(all_values[0])] = 0.99
    b.train(inputs, targets)
    pass

print("训练完成")
# 使用测试数据测试准确性
test_data_file = open("G:\神经网络数据\mnist_test.csv", "r")
test_data_list = test_data_file.readlines()
test_data_file.close()
# 使用算法逐项对比测试数据是否准确,然后统计
scorecard = []
for record in test_data_list:
    all_values = record.split(',')
    correct_label = int(all_values[0])
    inputs = (numpy.asfarray(all_values[1:]) / 255.0 * 0.99) + 0.01
    outputs = b.query(inputs)
    label = numpy.argmax(outputs)
    if label == correct_label:
        scorecard.append(1)
    else:
        scorecard.append(0)
        pass
    pass

scorecard_array = numpy.asarray(scorecard)
print("准确率", scorecard_array.sum() / scorecard_array.size)

结果

最后运行的结果显示准确率达到94%

相关标签: Python 深度学习