欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

[Matplotlib课后练习]

程序员文章站 2022-03-10 15:32:37
...

Exercise 11.1: Plotting a function

Plot the functionf(x) = sin2(x−2)e−x2 over the interval [0,2].

Add proper axis labels, a title, etc.

import matplotlib.pyplot as plt
import numpy as np
x = np.linspace (0 , 2, 100)
y = np.power(np.sin(x - 2), 2) * np.exp(-x*x)
plt.plot(x, y)
plt.ylabel('y')
plt.xlabel('x')
plt.title('exercise 1')
plt.show()

[Matplotlib课后练习]

Exercise 11.2: Data

Create a data matrix X with 20 observations of 10 variables. Generate a vector b with parameters Then generate the response vector y = Xb+z where z is a vector with standard normally distributed variables.

Now (by only using y and X), find an estimator for b, by solving

[Matplotlib课后练习]

Plot the true parameters b and estimated parameters ˆ b. See Figure 1 for an example plot.

import matplotlib.pyplot as plt
import numpy as np
import numpy.matlib as npm
import numpy.linalg
def find_B(X, y):
    return numpy.linalg.solve(X.T*X, X.T*y)

X = npm.randn((20, 10))
b = npm.randn((10, 1)) 
z = npm.randn((20, 1)) 
y = X * b + z

x = np.linspace(0, 9, 10)
paramb, = plt.plot(x, b, 'rx', label = 'True coefficients')
B = find_B(X, y)
paramB, = plt.plot(x, B, 'bo', label = 'Estimated coefficients')
plt.ylabel('index')
plt.xlabel('value')
plt.title('Parameter plot')
plt.legend(handles=[paramb, paramB])
plt.show()

[Matplotlib课后练习]

Exercise 11.3: Histogram and density estimation

Generate a vector z of 10000 observations from your favorite exotic distribution. Then make a plot that shows a histogram of z (with 25 bins), along with an estimate for the density, using a Gaussian kernel density estimator (see scipy.stats). See Figure 2 for an example plot.

import matplotlib.pyplot as plt
import numpy.matlib as npm
from scipy import stats
import numpy as np
z = np.random.normal(size=10000)
bins = 25
n, bins, p = plt.hist(z, bins, normed=True) 
y = stats.gaussian_kde(z)
plt.plot(bins, y(bins), 'g--') 
plt.title('Histogram')
plt.show()

[Matplotlib课后练习]