欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

ARM体系架构总结

程序员文章站 2022-06-08 22:09:45
...

转载自:https://blog.csdn.net/frank_zyp/article/details/84646051

作者:frank_zyp

一、ARM处理器简介及RISC特点

1、ARM处理器简介:

  ARM(Advanced RISC Machines)是一个32位RISC(精简指令集)处理器架构,ARM处理器则是ARM架构下

的微处理器。ARM处理器广泛的使用在许多嵌入式系统。ARM处理器的特点有指令长度固定,执行效率高,低成本等。

2、RISC设计主要特点:
  (1)指令集——RISC减少了指令集的种类,通常一个周期一条指令,采用固定长度的指令格式,编译器或程序员通过几条指令完成一个复杂的操作。而CISC指令集的指令长度通常不固定;

  (2)流水线——RISC采用单周期指令,且指令长度固定,便于流水线操作执行;

  (3)寄存器——RISC的处理器拥有更多的通用寄存器,寄存器操作较多。例如ARM处理器具有37个寄存器;

  (4)Load/Store结构——使用加载/存储指令批量从内存中读写数据,提高数据的传输效率;

  (5)寻址方式简化,指令长度固定,指令格式和寻址方式种类减少。

二、Arm的基本数据类型:

  双字节(DoubleWord):64位

  字(Word):在ARM体系结构中,字的长度为32位。

  半字(Half-Word):在ARM体系结构中,半字的长度为16位。

  字节(Byte):在ARM体系结构中,字节的长度为8位。

三、ARM处理器存储格式:

  ARM体系结构将存储器看作是从0地址开始的字节的线性组合。作为32位的微处理器,ARM体系结构所支持的

最大寻址空间为4GB。ARM体系结构可以用两种方法存储字数据,分别为大端模式和小端模式。

  大端模式(高地高低):字的高字节存储在低地址字节单元中,字的低字节存储在高地址字节单元中。

  小端模式(高高低低):字的高字节存储在高地址字节单元中,字的低字节存储在低地址字节单元中。

四、内核的工作模式:

  1、用户模式(user):正常程序执行模式;

  2、快速中断模式(FIQ):高优先级的中断产生会进入该种模式,用于高速通道传输;

  3、外部中断模式(IRQ):低优先级中断产生会进入该模式,用于普通的中断处理;

  4、特权模式(Supervisor):复位和软中断指令会进入该模式;

  5、数据访问中止模式(Abort):当存储异常时会进入该模式;

  6、未定义指令中止模式(Undefined):执行未定义指令会进入该模式;

  7、系统模式(System):用于运行特权级操作系统任务;

  8、监控模式(Monitor):可以在安全模式和非安全模式之间切换;

五、ARM9的5级流水线:

1、流水线的执行顺序:取指令->译码->执行->缓冲/数据->回写

  (1)取指令(Fetch):从存储器读取指令;

  (2)译码(Decode):译码以鉴别它是属于哪一条指令;

  (3)执行(Execute):将操作数进行组合以得到结果或存储器地址;

  (4)缓冲/数据(Buffer/data):如果需要,则访问存储器以存储数据;

  (5)回写:(Write-back):将结果写回到寄存器组中;

2、影响流水线性能的因素:

(1)互锁:

  不同的指令顺序也会造成时钟周期的不同,比如一条指令的执行需要前一条指令执行的结果,如果这时结果还没出来,那就需要等待,这就是流水线互锁:

      LDR r1, [r2, #4]
 
      ADD r0, r0, r1  //r1的值需要等到LDR的结果

(2)跳转指令:

  跳转指令也会破坏流水线的行为,后续指令的取值步骤受到跳转目标的影响。

3、寄存器组织:

(1)ARM Cortex-A8处理器有40个32位长的寄存器:

    a、32个通用寄存器

    b、7个状态寄存器:1个CPSR(当前程序状态寄存器)

                                       6个SPSR(备份程序状态寄存器)

    c、1个PC(程序计数器)

(2)每一种处理器模式有一组响应的寄存器组,如下对应方式:

  ARM体系架构总结

(3)通用寄存器包括R0-R15,可以分为3类:

A、未分组寄存器R0 – R7:

  在所有运行模式下,未分组寄存器都指向同一个物理寄存器,他们未被系统用作特殊的用途。因此在中断或异常

处理进行异常模式转换时,由于不同的处理器运行模式均使用相同的物理寄存器,所以可能造成寄存器中数据的破坏。

B、分组寄存器R8 – R14:

  对于分组寄存器,他们每次所访问的物理寄存器都与当前的处理器运行模式相关。

  R13常用作存放堆栈指针,用户也可以使用其他寄存器存放堆栈指针,称为SP;

  R14称为链接寄存器(LR),当执行子程序时,R14可得到R15(PC)的备份,执行完子程序后,又将R14的值

  复制回PC,即使用R14保存返回地址。

C、程序计数器PC(R15):

  寄存器R15用作程序计数器(PC),在ARM状态下,位[1:0]0,位[31:2]用于保存PC;在Thumb状态下,[0]0

  位[31:1]用于保存PC。对于ARM指令集而言,PC总是指向当前指令的下两条指令的地址,即PC的值为当前指令的

  地址值加8个字节。

(4)程序状态寄存器:

  CPSR(Current Program Status Register,当前程序状态寄存器),CPSR可在任何运行模式下被访问,它包括

条件标志位、中断禁止位、当前处理器模式标志位以及其他一些相关的控制和状态位。包含以下内容:

  • ALU状态标志的备份;
  • 当前的处理模式
  • 中断使能标志;
  • 设置处理的状态;

  每一种运行模式下都有一个专用的物理状态寄存器,称为SPSR(Saved Program Status Register,备份的程序

状态寄存器),当异常发生时,SPSR用于保存当前CPSR的值,从异常退出时则可由SPSR来恢复CPSR。

由于用户模式和系统模式不属于异常模式,这两种状态下没有SPSR,因此在这两种状态下访问SPSR,结果是未知的。

  ARM体系架构总结

  ARM体系架构总结

六、ARM指令集:

1、数据操作指令:

(1)MOV 将数据从一个寄存器传送到另一个寄存器:

  MOV AX,2000H;将16位数据2000H传送到AX寄存器

  MOV AL,20H;将8位数据20H传送到AL寄存器

  MOV AX,BX;将BX寄存器的16位数据传送到AX寄存器

  MOV AL,[2000H];将2000H单元的内容传送到AL寄存器

 

  MOVW  把 16 位立即数放到寄存器的底16位,高16位清0

  MOVT  把 16 位立即数放到寄存器的高16位,低 16位不影响

   movw    r8, #19028    ; 0x4a54

   movt    r8, #49456    ; 0xc130

   r8 = 0xc1304a54

(2)AND将寄存器做“逻辑与”操作后保存结果到其他寄存器

        AND   R2,R1,R3      //  R2 = R1 & R3

        ANDS  R0,R0,#0x01   //  R0 = R0 & 0x01

(3)SUB

        SUB   R0,R1,R2      //R0 = R1 – R2

        SUB   R0,R1,#256    //R0 = R1 -256

(4)ADD

        ADD  R0,R1,R2       //R0 = R1 + R2

        ADD  R0,R1,#256     //R0 = R1 + 256

        ADD  R0,R2,LSL#1    //R0 = R2 + (R3 << 1)

(5)CMP比较指令

(6)BIC位清零指令

        BIC  R0,R0,#0x1011  //清除位 0/1/3

2、乘法指令:

  MUL  MLA

  MUL  R1,R2,R3     //R1 = R2 * R3

  MOV  R0,#0x0A

  MLA  R1,R2,R3,R0   // R1 = R2 * R3 + 10

3、Load/Store指令:

(1)LDR从存储器中将一个32位的字数据传送到目的寄存器中。

        LDR  R1,[R0,#0x12] //将R0 +12地址处的数据读出,保存到R0中;

        LDR  R1,[R0,R2]   //将R0 + R1地址的数据读出,保存到R1中;

        LDR  RD,[Rn],#0x04 //Rn的值用作传输数据的基地址,在数据传送后,将偏移量0x04与Rn相加写回到Rd中

 

  LDR R0,[R1,LSL #3]            ;将存储器地址为R1*8的字数据读入寄存器R0。

  LDR R0,[R1,R2,LSL #2]    ;将存储器地址为R1+R2*4的字数据读入寄存器R0。

  LDR R0,[R1,,R2,LSL #2]!  ;将存储器地址为R1+R2*4的字数据读入寄存器R0,并将R1+R2*4的值存入R1。
 

(2)STR 用于将一个32bit的数据写入到指定的内存单元

       STR  R0,[R1],#8   //将R0中的字数据写入以R1为地址的存储器中,并将新地址R1+8写入R1。

  STR  R0,[R1,#8]      //将R0中的字数据写入以R1+8为地址的存储器中

  STR  R1, [R0]        //将r1寄存器的值,传送到地址值为r0的(存储器)内存中

4、跳转指令:

  B    跳转指令

  BL   带返回的连接跳转

  BX   跳转并切换状态

  BLX  带返回的跳转并切换状态

5、状态操作指令:

  ARM指令提供了两条如下指令,可直接控制程序状态寄存器(只有在特权模式下才能修改状态寄存器):

(1)MRS: 把程序状态寄存器的值送到一个通用寄存器中

        MRS  R1, CPSR  //将CPSR状态寄存器读出,保存到R1中

        MRS  R2, SPSR

(2)MSR:把寄存器的内容传送到程序状态寄存器

        MSR  CPSR_c,#0xD3  //CPSR[7:0] = 0xD3切换到管理模式

        MSR  CPSR_c,R3      //CPSR = R3

6、异常产生指令:

  SWI:软中断指令,产生软中断,处理器进入管理模式;

          SWI  0  //产生软中断,中断立即数为0

          SWI  0x123456  //产生软中断,中断立即数为0x123456

  BKPT:断点中断指令,处理器产生软件中断;

      产生一个预取异常,用来设置软件断点;

七、ARM指令的寻址方式:

1、立即数寻址:

  MOV  R0,#0          //送0到R0中

  ADD  R3,R3,#1      //R3的值加1

  CMP  R7,#1000       //R7的值和1000比较

  BIC   R9,R8,#0xff00  //将R8中8~15位清0,结果保存在R9中

2、寄存器寻址:

  寄存器的值可以被直接用于数据操作指令

   MOV  R2,R0      //R0的值送R2

   ADD  R4,R3,R2  //R4 = R2 + R3

   CMP  R7,R8      //比较R7和R8的值

3、寄存器移位寻址:

  预处理和移位发生在同一周期内,有效使用移位寄存器,可以提供代码执行效率;

   ADD  R2,R0,R1,LSR  #5

   MOV  R1,R0,LSL  #2

   RSB  R9,R5,R5,LSL  #1

   SUB  R1,R2,R0,LSR  #4

4、寄存器间接寻址:

  LDR  R1,[R2]  //将R2的数值作为地址,取出地址中的数据保存到R1中

  STR  R1,[R2]  //将R2数值作为地址,取出R1中的值存入R2所指向的地址

5、基址变址寻址:

  基址变址是将基址寄存器的内容与指令中给出的偏移量相加,形成操作数的有效地址;

  基址变址寻址常用于查表、数组操作、访问基址附近的存储单元等。

   LDR  R1,[ R0,#0xf ]  //将R0的数值加0x0f作为地址,取出此地址的数值保存到R1

   STR  R1,[R0,#-2]   //将R0的数值减2作为地址,将R1中的内容保存到此地址中

   STR  R1,[R0,+R2]   //将R0的值加上R2的值作为地址,把R1的内容保存到该地址

6、多寄存器寻址/块拷贝寻址:

  批量Load、Store指令将一片连续的内存单元数据加载到通用寄存器组中,或将一组通用寄存器的数据存储

到内存单元中:

    IA :后递增方式

    IB :先递增方式

    DA:后递减方式

    DB:先递减方式

  块拷贝寻址指令:

          STMIA  

          STMIB

7、相对寻址:

  BL  FUN1     //调用到FUN1的子程序

  B   LOOP     //条件跳转到LOOP标号处

  STMDA

  STMDB

八、异常中断

1、硬件中断&软件中断:

  硬件中断是随机的,不可预测的

  软件中断是事先安排的(如workQueue、task)

2、ARM处理器有七种类型的异常::

  (1)复位异常(Reset):处理器在工作时, 突然按下重启键, 就会触发该异常;

  (2)数据异常(Data Abort):读取数据失败;

  (3)快速中断异常(FIQ):快速中断要比普通中断响应速度要快一些;

  (4)外部中断异常(IRQ):普通中断;

  (5)预取异常(Prefetch Abort):预取指令失败, ARM 在执行指令的过程中, 要先去预取指令准备执行,

           如果预取指令失败, 就会产生该异常;

  (6)软中断异常(SWI):软件中需要去打断处理器工作, 可以使用软中断来执行 ;

  (7)未定义指令异常(Undefined Instruction):处理器无法识别指令的异常, 处理器执行的指令是有规范的,

           如果尝试执行不符合要求的指令, 就会进入到该异常指令对应的地址中;

  当异常发生时,分组寄存器R14和SPSR用于保存处理器状态,

  异常返回时,SPSR内容恢复到SPSR,链接寄存器R14的内容恢复到程序计数器PC。

  下图中每种异常对应一种内核的工作模式,当然每种异常产生,内核都会进入特定的工作模式;

  ARM体系架构总结

3、异常处理流程:

(1)中断响应所做的工作:

  A、保存短点:保存下一将要执行的指令的地址,也就是把这个地址送入堆栈;

  B、寻找中断入口:根据不同的中断源产生的中断,查找不同的入口地址;

  C、执行中断处理程序;

  D、中断返回:执行完中断指令后,就从中断返回到主程序继续执行;

(2)异常向量表

  每一个异常发生时,总是从异常向量表开始跳转,所谓的异常向量表,是指由7个异常向量及其处理函数跳转

关系组成的表:

   0x00000000: b reset

   0x00000004: ldr  pc, _undefined_instruction

   0x00000008: ldr pc, _software_interrupt

   0x00000008: ldr pc, _software_interrupt

   0x0000000c: ldr pc, _prefetch_abort

   0x00000010: ldr pc, _data_abort

   0x00000014: ldr pc, _not_used   //保留

   0x00000018: ldr pc, _irq

   0x0000001c: ldr pc, _fiq

(3)当一个ARM异常返回时,需要完成如下任务:

    通用寄存器的恢复;

    状态寄存器的恢复;

    PC指针的恢复;

 

相关标签: 嵌入式研究