欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Redis 数据结构之Dictionary 字典

程序员文章站 2022-03-10 10:35:55
...

字典(dictionary), 又名映射(map)或关联数组(associative array), 是一种抽象数据结构, 由一集键值对(key-value pairs)组成, 各个键值对的键各不相同, 程序可以添加新的键值对到字典中, 或者基于键进行查找、更新或删除等操作。

字典的主要用途有以下两个:

  • 实现数据库键空间(key space)
  • 用作 Hash 类型键的底层实现之一
实现数据库键空间

Redis 是一个键值对数据库, 数据库中的键值对由字典保存: 每个数据库都有一个对应的字典, 这个字典被称之为键空间(key space)。

当用户添加一个键值对到数据库时(不论键值对是什么类型), 程序就将该键值对添加到键空间; 当用户从数据库中删除键值对时, 程序就会将这个键值对从键空间中删除; 等等。

举个例子,执行 FLUSHDB 可以清空键空间里的所有键值对数据:

redis> FLUSHDB
OK

执行 DBSIZE 则返回键空间里现有的键值对:

redis> DBSIZE
(integer) 0

还可以用 SET 设置一个字符串键到键空间, 并用 GET 从键空间中取出该字符串键的值:

redis> SET number 10086
OK

redis> GET number
"10086"

redis> DBSIZE
(integer) 1
用作 Hash 类型键的底层实现之一

Redis 的 Hash 类型键使用以下两种数据结构作为底层实现:

  • 字典
  • 压缩列表

因为压缩列表比字典更节省内存, 所以程序在创建新 Hash 键时, 默认使用压缩列表作为底层实现, 当有需要时, 程序才会将底层实现从压缩列表转换到字典。

当用户操作一个 Hash 键时, 键值在底层就可能是一个哈希表。

字典的实现

实现字典的方法有很多种:

  • 链表或数组,时间复杂度高
  • 哈希表,兼顾高效和简单
  • 平衡树,复杂和稳定高效

在众多可能的实现中, Redis 选择了高效、实现简单的哈希表,作为字典的底层实现。

/*
 * 字典
 *
 * 每个字典使用两个哈希表,用于实现渐进式 rehash
 */
typedef struct dict {

    // 特定于类型的处理函数
    dictType *type;

    // 类型处理函数的私有数据
    void *privdata;

    // 哈希表(2 个)
    dictht ht[2];

    // 记录 rehash 进度的标志,值为 -1 表示 rehash 未进行
    int rehashidx;

    // 当前正在运作的安全迭代器数量
    int iterators;

} dict;

注意 dict 类型使用了两个指针,分别指向两个哈希表。

其中, 0 号哈希表(ht[0])是字典主要使用的哈希表, 而 1 号哈希表(ht[1])则只有在程序对 0 号哈希表进行 rehash 时才使用。

API:
Redis 数据结构之Dictionary 字典

哈希表实现
/*
 * 哈希表
 */
typedef struct dictht {

    // 哈希表节点指针数组(俗称桶,bucket)
    dictEntry **table;

    // 指针数组的大小
    unsigned long size;

    // 指针数组的长度掩码,用于计算索引值
    unsigned long sizemask;

    // 哈希表现有的节点数量
    unsigned long used;

} dictht;

table 属性是个数组, 数组的每个元素都是个指向 dictEntry 结构的指针。

每个 dictEntry 都保存着一个键值对, 以及一个指向另一个 dictEntry 结构的指针:

/*
 * 哈希表节点
 */
typedef struct dictEntry {

    // 键
    void *key;

    // 值
    union {
        void *val;
        uint64_t u64;
        int64_t s64;
    } v;

    // 链往后继节点
    struct dictEntry *next;

} dictEntry;

next 属性指向另一个 dictEntry 结构, 多个 dictEntry 可以通过 next 指针串连成链表, 从这里可以看出, dictht 使用链地址法来处理键碰撞: 当多个不同的键拥有相同的哈希值时,哈希表用一个链表将这些键连接起来。

哈希算法

Redis 目前使用两种不同的哈希算法:

使用哪种算法取决于具体应用所处理的数据:

  • 命令表以及 Lua 脚本缓存都用到了算法 2 。
  • 算法 1 的应用则更加广泛:数据库、集群、哈希键、阻塞操作等功能都用到了这个算法。
rehash

对于使用链地址法来解决碰撞问题的哈希表 dictht 来说, 哈希表的性能取决于大小(size属性)与保存节点数量(used属性)之间的比率:

  • 哈希表的大小与节点数量,比率在 1:1 时,哈希表的性能最好;
  • 如果节点数量比哈希表的大小要大很多的话,那么哈希表就会退化成多个链表,哈希表本身的性能优势便不复存在;

为了在字典的键值对不断增多的情况下保持良好的性能, 字典需要对所使用的哈希表(ht[0])进行 rehash 操作: 在不修改任何键值对的情况下,对哈希表进行扩容, 尽量将比率维持在 1:1 左右。

dictAdd 在每次向字典添加新键值对之前, 都会对哈希表 ht[0] 进行检查, 对于 ht[0] 的 size 和 used 属性, 如果它们之间的比率 ratio = used / size 满足以下任何一个条件的话,rehash 过程就会被**:

  • 自然 rehash : ratio >= 1 ,且变量 dict_can_resize 为真。
  • 强制 rehash : ratio 大于变量 dict_force_resize_ratio (目前版本中, dict_force_resize_ratio 的值为 5 )。

什么时候 dict_can_resize 会为假?

在前面介绍字典的应用时也说到过, 数据库就是字典, 数据库里的哈希类型键也是字典, 当 Redis 使用子进程对数据库执行后台持久化任务时(比如执行 BGSAVE 或 BGREWRITEAOF 时), 为了最大化地利用系统的 copy on write 机制, 程序会暂时将 dict_can_resize 设为假, 避免执行自然 rehash , 从而减少程序对内存的触碰(touch)。

当持久化任务完成之后, dict_can_resize 会重新被设为真。

另一方面, 当字典满足了强制 rehash 的条件时, 即使 dict_can_resize 不为真(有 BGSAVE 或 BGREWRITEAOF 正在执行), 这个字典一样会被 rehash 。

Rehash 执行过程

字典的 rehash 操作实际上就是执行以下任务:

  • 创建一个比 ht[0]->table 更大的 ht[1]->table,大小至少为 ht[0]->used 的两倍;
  • 将 ht[0]->table 中的所有键值对迁移到 ht[1]->table,ht[0]->table 的节点会被逐渐迁移到 ht[1]->table , 因为 rehash 是分多次进行的(细节在下一节解释), 字典的 rehashidx 变量会记录 rehash 进行到 ht[0] 的哪个索引位置上。 ;
  • 将原有 ht[0] 的数据清空,并将 ht[1] 替换为新的 ht[0] ,创建一个新的空哈希表,并将它设置为 ht[1] ,将字典的 rehashidx 属性设置为 -1 ,标识 rehash 已停止;
渐进式 rehash

渐进式 rehash 主要由 _dictRehashStep 和 dictRehashMilliseconds 两个函数进行:

  • _dictRehashStep 用于对数据库字典、以及哈希键的字典进行被动 rehash ;
  • dictRehashMilliseconds 则由 Redis 服务器常规任务程序(server cron job)执行,用于对数据库字典进行主动 rehash ;

_dictRehashStep:

每次执行 _dictRehashStep , ht[0]->table 哈希表第一个不为空的索引上的所有节点就会全部迁移到 ht[1]->table 。

在 rehash 开始进行之后(d->rehashidx 不为 -1), 每次执行一次添加、查找、删除操作, _dictRehashStep 都会被执行一次:

因为字典会保持哈希表大小和节点数的比率在一个很小的范围内, 所以每个索引上的节点数量不会很多(从目前版本的 rehash 条件来看,平均只有一个,最多通常也不会超过五个), 所以在执行操作的同时,对单个索引上的节点进行迁移, 几乎不会对响应时间造成影响。

dictRehashMilliseconds:

dictRehashMilliseconds 可以在指定的毫秒数内, 对字典进行 rehash 。

当 Redis 的服务器常规任务执行时, dictRehashMilliseconds 会被执行, 在规定的时间内, 尽可能地对数据库字典中那些需要 rehash 的字典进行 rehash , 从而加速数据库字典的 rehash 进程(progress)。

其他措施:

在哈希表进行 rehash 时, 字典还会采取一些特别的措施, 确保 rehash 顺利、正确地进行:

因为在 rehash 时,字典会同时使用两个哈希表,所以在这期间的所有查找、删除等操作,除了在 ht[0] 上进行,还需要在 ht[1] 上进行。
在执行添加操作时,新的节点会直接添加到 ht[1] 而不是 ht[0] ,这样保证 ht[0] 的节点数量在整个 rehash 过程中都只减不增。

字典的收缩

上面关于 rehash 的章节描述了通过 rehash 对字典进行扩展(expand)的情况, 如果哈希表的可用节点数比已用节点数大很多的话, 那么也可以通过对哈希表进行 rehash 来收缩(shrink)字典。

收缩 rehash 和上面展示的扩展 rehash 的操作几乎一样,执行以下步骤:

  • 创建一个比 ht[0]->table 小的 ht[1]->table ;
  • 将 ht[0]->table 中的所有键值对迁移到 ht[1]->table ;
  • 将原有 ht[0] 的数据清空,并将 ht[1] 替换为新的 ht[0] ;

字典的收缩规则由 redis.c/htNeedsResize 函数定义:

/*
 * 检查字典的使用率是否低于系统允许的最小比率
 *
 * 是的话返回 1 ,否则返回 0 。
 */
int htNeedsResize(dict *dict) {
    long long size, used;

    // 哈希表大小
    size = dictSlots(dict);

    // 哈希表已用节点数量
    used = dictSize(dict);

    // 当哈希表的大小大于 DICT_HT_INITIAL_SIZE
    // 并且字典的填充率低于 REDIS_HT_MINFILL 时
    // 返回 1
    return (size && used && size > DICT_HT_INITIAL_SIZE &&
            (used*100/size < REDIS_HT_MINFILL));
}

在默认情况下, REDIS_HT_MINFILL 的值为 10 , 也即是说, 当字典的填充率低于 10% 时, 程序就可以对这个字典进行收缩操作了。

字典收缩和字典扩展的一个区别是:字典的扩展操作是自动触发的(不管是自动扩展还是强制扩展);而字典的收缩操作则是由程序手动执行。

因此, 使用字典的程序可以决定何时对字典进行收缩:

  • 当字典用于实现哈希键的时候, 每次从字典中删除一个键值对, 程序就会执行一次 htNeedsResize 函数, 如果字典达到了收缩的标准, 程序将立即对字典进行收缩;
  • 当字典用于实现数据库键空间(key space)的时候, 收缩的时机由 redis.c/tryResizeHashTables 函数决定
字典的迭代

字典带有自己的迭代器实现 —— 对字典进行迭代实际上就是对字典所使用的哈希表进行迭代:

  • 迭代器首先迭代字典的第一个哈希表,然后,如果 rehash 正在进行的话,就继续对第二个哈希表进行迭代。
  • 当迭代哈希表时,找到第一个不为空的索引,然后迭代这个索引上的所有节点。
  • 当这个索引迭代完了,继续查找下一个不为空的索引,如此反覆,直到整个哈希表都迭代完为止。

字典的迭代器有两种:

  • 安全迭代器:在迭代进行过程中,可以对字典进行修改。
  • 不安全迭代器:在迭代进行过程中,不对字典进行修改。

以下是迭代器的数据结构定义:

/*
 * 字典迭代器
 */
typedef struct dictIterator {

    dict *d;                // 正在迭代的字典

    int table,              // 正在迭代的哈希表的号码(0 或者 1)
        index,              // 正在迭代的哈希表数组的索引
        safe;               // 是否安全?

    dictEntry *entry,       // 当前哈希节点
              *nextEntry;   // 当前哈希节点的后继节点

} dictIterator;

API:
Redis 数据结构之Dictionary 字典