数据结构(13):平衡二叉树(AVL)实现
程序员文章站
2022-06-07 08:22:20
...
一、平衡二叉树定义
平衡二叉树定义,对于任意一个节点,左子树和右子树的高度差不能超过1.
特性:平衡二叉树的高度和节点数量之间的关系是O(logn)。
二、标注
1.平衡因子:左右两个子树的高度差。如果平衡因子绝对值>=2,则不是平衡二叉树,如下图
三、平衡基本操作
1.右旋转
(1)原始树
(2)右旋转:旋转为
(3)证明右旋转后,满足平衡二叉树和二分搜索树(节点,大于左孩子,小于右孩子)的性质。
2.左旋转
(1)原始树
(2)左旋转
3.LR
(1)原始树
(2)先将x左旋转,转换为LL
(3)再进行右旋转
4.RL
(1)原始树
(2)先堆X节点进行右旋转,为RR
(3)再对y进行左旋转
四、AVL实现代码
package com.DataStructures._12AVL;
import java.util.ArrayList;
/**
* Created by Administrator on 2019/11/23.
*/
public class AVLTree <K extends Comparable<K>, V> {
private class Node{
public K key;
public V value;
public Node left, right;
public int height; //每个节点的高度值
public Node(K key, V value){
this.key = key;
this.value = value;
left = null;
right = null;
height=1;
}
}
private Node root;
private int size;
public AVLTree(){
root = null;
size = 0;
}
public int getSize(){
return size;
}
public boolean isEmpty(){
return size == 0;
}
//=======================辅助函数 start=================================
//返回当前节点node的高度
private int getHeight(Node node){
if (node==null){
return 0;
}
return node.height;
}
//计算每个节点的平衡因子
//平衡因子>=2或则<=-2时,则有问题
private int getBalanceFactor(Node node){
if(node==null){
return 0;
}
return getHeight(node.left)-getHeight(node.right);
}
//判断当前树是否时二分搜索树:通过中序遍历,由小到打
//二分搜索树:所有节点满足,左子节点小于根节点,右子节点大于根节点
public boolean isBST(){
ArrayList<K> keys=new ArrayList<K>();
inOrder(root,keys);
for (int i = 1; i < keys.size(); i++) {
if(keys.get(i-1).compareTo(keys.get(i))>0){
return false;
}
}
return true;
}
private void inOrder(Node node,ArrayList<K> keys){
if (node==null){
return;
}
inOrder(node.left,keys);
keys.add(node.key);
inOrder(node.right,keys );
}
//判断该二叉树,是否是一个平衡二叉树
public boolean isBalanced(){
return isBalanced(root);
}
//判断以Node为根的二叉树是否是一个平衡二叉树,使用递归算法
public boolean isBalanced(Node node){
if(node==null)
return true;
int balanceFactor=getBalanceFactor(node);
if(Math.abs(balanceFactor)>1){
return false;
}
return isBalanced(node.left) && isBalanced(node.right);
}
//=======================辅助函数 end=================================
// 向二分搜索树中添加新的元素(key, value)
public void add(K key, V value){
root = add(root, key, value);
}
// 向以node为根的二分搜索树中插入元素(key, value),递归算法
// 返回插入新节点后二分搜索树的根
private Node add(Node node, K key, V value){
if(node == null){
size ++;
return new Node(key, value);
}
if(key.compareTo(node.key) < 0)
node.left = add(node.left, key, value);
else if(key.compareTo(node.key) > 0)
node.right = add(node.right, key, value);
else // key.compareTo(node.key) == 0
node.value = value;
//1.更新height
node.height=1+Math.max(getHeight(node.left),getHeight(node.right));
//2.计算平衡因子
int balanceFactor=getBalanceFactor(node);
// if(Math.abs(balanceFactor)>1){
// System.out.println("unbalanced : "+balanceFactor);
// }
//3.如果平衡因子大于1,则维护平衡性
//情况1【LL】:左侧大于右侧,而且左子树的平衡因子大于等于0,进行右旋转
if(balanceFactor>1&&getBalanceFactor(node.left)>=0){
return rightRotate(node);
}
//情况2【RR】:右侧大于左侧,而且右子树平衡因子小于等于0,即向右倾斜,进行左旋转
if (balanceFactor<-1&&getBalanceFactor(node.right)<=0){
return leftRotate(node);
}
//情况3【LR】
if(balanceFactor>1&&getBalanceFactor(node.left)<0){
node.left=leftRotate(node.left);
return rightRotate(node);
}
//情况4【RL】
if (balanceFactor<-1&&getBalanceFactor(node.right)>0){
node.right=rightRotate(node.right);
return leftRotate(node);
}
return node;
}
//右旋转
// 对节点y进行向右旋转操作,返回旋转后新的根节点x
// y x
// / \ / \
// x T4 向右旋转 (y) z y
// / \ - - - - - - - -> / \ / \
// z T3 T1 T2 T3 T4
// / \
// T1 T2
private Node rightRotate(Node y){
Node x=y.left;
Node T3=x.right;
//向右旋转
x.right=y;
y.left=T3;
//更新x,y的height值
y.height=Math.max(getHeight(y.left),getHeight(y.right))+1;
x.height=Math.max(getHeight(x.left),getHeight(x.right))+1;
return x;
}
//左旋转
// 对节点y进行向左旋转操作,返回旋转后新的根节点x
// y x
// / \ / \
// T1 x 向左旋转 (y) y z
// / \ - - - - - - - -> / \ / \
// T2 z T1 T2 T3 T4
// / \
// T3 T4
private Node leftRotate(Node y){
Node x=y.right;
Node T2=x.left;
//向左旋转
x.left=y;
y.right=T2;
//更新height
y.height=Math.max(getHeight(y.left),getHeight(y.right))+1;
x.height=Math.max(getHeight(x.left),getHeight(x.right))+1;
return x;
}
// 返回以node为根节点的二分搜索树中,key所在的节点
private Node getNode(Node node, K key){
if(node == null)
return null;
if(key.equals(node.key))
return node;
else if(key.compareTo(node.key) < 0)
return getNode(node.left, key);
else // if(key.compareTo(node.key) > 0)
return getNode(node.right, key);
}
public boolean contains(K key){
return getNode(root, key) != null;
}
public V get(K key){
Node node = getNode(root, key);
return node == null ? null : node.value;
}
public void set(K key, V newValue){
Node node = getNode(root, key);
if(node == null)
throw new IllegalArgumentException(key + " doesn't exist!");
node.value = newValue;
}
// 返回以node为根的二分搜索树的最小值所在的节点
private Node minimum(Node node){
if(node.left == null)
return node;
return minimum(node.left);
}
// 删除掉以node为根的二分搜索树中的最小节点
// 返回删除节点后新的二分搜索树的根
private Node removeMin(Node node){
if(node.left == null){
Node rightNode = node.right;
node.right = null;
size --;
return rightNode;
}
node.left = removeMin(node.left);
return node;
}
// 从二分搜索树中删除键为key的节点
public V remove(K key){
Node node = getNode(root, key);
if(node != null){
root = remove(root, key);
return node.value;
}
return null;
}
private Node remove(Node node, K key){
if( node == null )
return null;
//最终要返回的node
Node retNode;
if( key.compareTo(node.key) < 0 ){
node.left = remove(node.left , key);
// return node;
retNode=node;
}
else if(key.compareTo(node.key) > 0 ){
node.right = remove(node.right, key);
// return node;
retNode=node;
}
else{ // key.compareTo(node.key) == 0
if(node.left == null){ // 待删除节点左子树为空的情况
Node rightNode = node.right;
node.right = null;
size --;
// return rightNode;
retNode=rightNode;
}else if(node.right == null){ // 待删除节点右子树为空的情况
Node leftNode = node.left;
node.left = null;
size --;
// return leftNode;
retNode=leftNode;
}else { // 待删除节点左右子树均不为空的情况
// 找到比待删除节点大的最小节点, 即待删除节点右子树的最小节点
// 用这个节点顶替待删除节点的位置
Node successor = minimum(node.right);
// successor.right = removeMin(node.right); //可能会引起删除值
successor.right=remove(node.right,successor.key);//服用remove的调整方法
successor.left = node.left;
node.left = node.right = null;
// return successor;
retNode=successor;
}
}
// 当retNode为空的时候,则直接返回
if (retNode==null){
return null;
}
//1.更新height
retNode.height=1+Math.max(getHeight(retNode.left),getHeight(retNode.right));
//2.计算平衡因子
int balanceFactor=getBalanceFactor(retNode);
// if(Math.abs(balanceFactor)>1){
// System.out.println("unbalanced : "+balanceFactor);
// }
//3.如果平衡因子大于1,则维护平衡性
//情况1【LL】:左侧大于右侧,而且左子树的平衡因子大于等于0,进行右旋转
if(balanceFactor>1&&getBalanceFactor(retNode.left)>=0){
return rightRotate(retNode);
}
//情况2【RR】:右侧大于左侧,而且右子树平衡因子小于等于0,即向右倾斜,进行左旋转
if (balanceFactor<-1&&getBalanceFactor(retNode.right)<=0){
return leftRotate(retNode);
}
//情况3【LR】
if(balanceFactor>1&&getBalanceFactor(retNode.left)<0){
retNode.left=leftRotate(retNode.left);
return rightRotate(retNode);
}
//情况4【RL】
if (balanceFactor<-1&&getBalanceFactor(retNode.right)>0){
node.right=rightRotate(retNode.right);
return leftRotate(retNode);
}
return retNode;
}
public static void main(String[] args){
System.out.println("Pride and Prejudice");
ArrayList<String> words = new ArrayList<>();
if(FileOperation.readFile("src/resources/pride-and-prejudice.txt", words)) {
System.out.println("Total words: " + words.size());
AVLTree<String, Integer> map = new AVLTree<>();
for (String word : words) {
if (map.contains(word))
map.set(word, map.get(word) + 1);
else
map.add(word, 1);
}
System.out.println("Total different words: " + map.getSize());
System.out.println("Frequency of PRIDE: " + map.get("pride"));
System.out.println("Frequency of PREJUDICE: " + map.get("prejudice"));
System.out.println("is BST : "+map.isBST());
System.out.println("is Balance : "+ map.isBalanced());
for (String word : words) {
map.remove(word);
if(!map.isBST()||!map.isBalanced()){
// System.out.println("");
throw new RuntimeException("Error: 非BST,或者非平衡树");
}
}
}
System.out.println();
}
}
五、基于AVL的集合和映射
1.集合
(1)接口
package com.DataStructures._12AVL;
/**
* Created by Administrator on 2018/12/17.
*/
public interface Set<E> {
void add(E e);
void remove(E e);
boolean contains(E e);
int getSize();
boolean isEmpty();
}
(2)实现
package com.DataStructures._12AVL;
/**
* Created by Administrator on 2019/11/24.
*/
public class AVLSet <E extends Comparable<E>> implements Set<E> {
private AVLTree<E,Object> avl;
public AVLSet(){
avl=new AVLTree<E, Object>();
}
@Override
public void add(E e) {
avl.add(e,null);
}
@Override
public void remove(E e) {
avl.remove(e);
}
@Override
public boolean contains(E e) {
// return false;
return avl.contains(e);
}
@Override
public int getSize() {
// return 0;
return avl.getSize();
}
@Override
public boolean isEmpty() {
// return false;
return avl.isEmpty();
}
}
2.映射map
(1)接口
package com.DataStructures._12AVL;
/**
* Created by Administrator on 2018/12/17.
*/
public interface Map<K,V> {
void add(K key, V value);
V remove(K key);
boolean contains(K key);
V get(K key);
void set(K key, V value);
int getSize();
boolean isEmpty();
}
(2)实现
package com.DataStructures._12AVL;
/**
* Created by Administrator on 2019/11/24.
* AVLMap:基于AVL实现的Map
*/
public class AVLMap <K extends Comparable<K>,V> implements Map<K,V> {
private AVLTree<K,V> avl;
public AVLMap(){
avl=new AVLTree<>();
}
@Override
public int getSize(){
return avl.getSize();
}
@Override
public boolean isEmpty(){
return avl.isEmpty();
}
@Override
public void add(K key, V value){
avl.add(key, value);
}
@Override
public boolean contains(K key){
return avl.contains(key);
}
@Override
public V get(K key){
return avl.get(key);
}
@Override
public void set(K key, V newValue){
avl.set(key, newValue);
}
@Override
public V remove(K key){
return avl.remove(key);
}
}
上一篇: 海内哪家域名和空间服务商比较靠谱
下一篇: 判断一颗二叉树是否是平衡二叉树