欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

数据结构之平衡二叉树

程序员文章站 2022-06-07 08:01:46
...

一、定义

平衡二叉树也叫自平衡二叉搜索树(Self-Balancing Binary Search Tree),所以其本质也是一颗二叉搜索树,不过为了限制左右子树的高度差,避免出现倾斜树等偏向于线性结构演化的情况,所以对二叉搜索树中每个节点的左右子树作了限制,左右子树的高度差称之为平衡因子,树中每个节点的平衡因子绝对值不大于 1,此时二叉搜索树称之为平衡二叉树。

自平衡是指,在对平衡二叉树执行插入或删除节点操作后,可能会导致树中某个节点的平衡因子绝对值超过 ,即平衡二叉树变得“不平衡”,为了恢复该节点左右子树的平衡,此时需要对节点执行旋转操作。

二、平衡二叉树不平衡的情形

把需要重新平衡的结点叫做α,由于任意两个结点最多只有两个儿子,因此高度不平衡时,α结点的两颗子树的高度相差2.容易看出,这种不平衡可能出现在下面4中情况中:

(1)对α的左儿子的左子树进行一次插入
(2)对α的左儿子的右子树进行一次插入
(3)对α的右儿子的左子树进行一次插入
(4)对α的右儿子的右子树进行一次插入

情形1和情形4是关于α的镜像对称,二情形2和情形3也是关于α的镜像对称,因此理论上看只有两种情况,但编程的角度看还是四种情形。

第一种情况是插入发生在“外边”的情形(左左或右右),该情况可以通过一次单旋转完成调整;第二种情况是插入发生在“内部”的情形(左右或右左),这种情况比较复杂,需要通过双旋转来调整。

三、AVL树插入时的失衡与调整

AVL树的四种插入节点方式:

假设一颗 AVL 树的某个节点为 A,有四种操作会使 A 的左右子树高度差大于 1,从而破坏了原有 AVL 树的平衡性。平衡二叉树插入节点的情况分为以下四种:
数据结构之平衡二叉树

(1)左旋(RR)

所谓LL(左旋)就是向左旋转一次,下图所示为最简洁的左旋(插入3导致值为1的节点不平衡):
数据结构之平衡二叉树
然而更多时候根节点并不是只有一个子树,下图为复杂的LL(左旋,插入13导致值为4的节点不平衡):
数据结构之平衡二叉树
红色节点为插入后不平衡的节点,黄色部分为需要改变父节点的分支,左旋后,原红色节点的右孩子节点变成了根节点,红色节点变成了它的左孩子,而它原本的左孩子(黄色部分)不能丢,而此时红色节点的右孩子是空的,于是就把黄色部分放到了红色节点的右孩子的位置上。调整后该二叉树还是一棵二叉排序(搜索)树,因为黄色部分的值大于原来的根节点的值,而小于后来的根节点的值,调整后,黄色部分还是位于原来的根节点(红色节点)和后来的根节点之间。

LL(左旋)代码如下:

node *LeftRotate(node *root) {
	//左旋 
	node *temp=root->right; 
	root->right=temp->left;
	temp->left=root;
	return temp;
}

代码解析:返回的是左旋后的根节点,左旋后的根节点是原来根节点的右孩子,左旋后的根节点的左孩子需要嫁接到原来根节点的右孩子上,原来的根节点嫁接到左旋后根节点的左孩子上。temp对应上图中值为8的节点,root对应上图中值为4的节点。

(2)右旋(LL)

所谓RR(右旋)就是向右旋转一次,下图所示为最简洁的右旋(插入1导致值为3的节点不平衡):
数据结构之平衡二叉树
然而更多时候根节点并不是只有一个子树,下图为复杂的RR(右旋,插入1导致值为9的节点不平衡):
数据结构之平衡二叉树
红色节点为插入后不平衡的节点,黄色部分为需要改变父节点的分支,右旋后,原红色节点的左孩子节点变成了根节点,红色节点变成了它的右孩子,而它原本的右孩子(黄色部分)不能丢,而此时红色节点的左孩子是空的,于是就把黄色部分放到了红色节点的左孩子的位置上。调整后该二叉树还是一棵二叉排序(搜索)树,因为黄色部分的值小于原来的根节点的值,而大于后来的根节点的值,调整后,黄色部分还是位于后来的根节点和原来的根节点(红色节点)之间。

RR(右旋)代码如下:

node *RightRotate(node *root) {
	//右旋 
	node *temp=root->left; 
	root->left=temp->right;
	temp->right=root;
	return temp;
}

代码解析:返回的是右旋后的根节点,右旋后的根节点是原来根节点的左孩子,右旋后的根节点的右孩子需要嫁接到原来根节点的左孩子上,原来的根节点嫁接到右旋后根节点的右孩子上。temp对应上图中值为5的节点,root对应上图中值为9的节点。

(3)先左旋再右旋(LR)

所谓LR(先左旋再右旋)就是先将左子树左旋,再整体右旋,下图为最简洁的LR旋转(插入2导致值为3的节点不平衡):
数据结构之平衡二叉树
然而更多时候根节点并不是只有一个子树,下图为复杂的LR旋转(插入8导致值为9的节点不平衡):
数据结构之平衡二叉树
先将红色节点的左子树左旋,红色节点的左子树的根原本是值为4的节点,左旋后变为值为6的节点,原来的根节点变成了左旋后根节点的左孩子,左旋后根节点原本的左孩子(蓝色节点)变成了原来的根节点的右孩子;再整体右旋,原来的根节点(红色节点)变成了右旋后的根节点的右孩子,右旋后的根节点原本的右孩子(黄色节点)变成了原来的根节点(红色节点)的左孩子。旋转完成后,仍然是一棵二叉排序(搜索)树。

LR旋转代码如下:

node *LeftRightRotate(node *root) {
	//先对root的左子树左旋再对root右旋 
	root->left=LeftRotate(root->left);
	return RightRotate(root);
}

代码解析:返回的是LR旋转后的根节点,先对根节点的左子树左旋,再整体右旋。root对应上图中值为9的节点。

(4)先右旋再左旋(RL)

所谓RL(先右旋再左旋)就是先将右子树右旋,再整体左旋,下图为最简洁的RL旋转(插入2导致值为1的节点不平衡):
数据结构之平衡二叉树
然而更多时候根节点并不是只有一个子树,下图为复杂的RL旋转(插入8导致值为4的节点不平衡):
数据结构之平衡二叉树
先将红色节点的右子树右旋,红色节点的右子树的根原本是值为9的节点,右旋后变为值为6的节点,原来的根节点变成了右旋后根节点的右孩子,右旋后根节点原本的右孩子(蓝色节点)变成了原来的根节点的左孩子;再整体左旋,原来的根节点(红色节点)变成了左旋后的根节点的左孩子,左旋后的根节点原本的左孩子(黄色节点)变成了原来的根节点(红色节点)的右孩子。旋转完成后,仍然是一棵二叉排序(搜索)树。

RL旋转代码如下:

node *RightLeftRotate(node *root) {
	//先对root的右子树右旋再对root左旋 
	root->right=RightRotate(root->right);
	return LeftRotate(root);
}

代码解析:返回的是RL旋转后的根节点,先对根节点的右子树右旋,再整体左旋。root对应上图中值为4的节点。

构造平衡二叉树是一个边插入边调整的过程,插入一个看看是否造成了不平衡,造成了不平衡就立即调整。
代码如下:

node *Insert(node *root,int v) {
	if(root==NULL) { 
	  root=new node; 
	  root->val=v; 
	  root->left=NULL; 
	  root->right=NULL; 
	}else {
	  if(v<root->val) {
	  	//插到左子树上 
	  	root->left=Insert(root->left,v);
	  	if(depth(root->left)-depth(root->right)>=2) {
	  	//左边高右边低
	  		if(v<root->left->val) {
	  		//右旋 root=RightRotate(root); 
	  	     }else {
	  	     //先对其左子树左旋再右旋root=LeftRightRotate(root); 
	  	     } 
	      } 
	  }else {
	  //插到右子树上 
	  root->right=Insert(root->right,v);
	  if(depth(root->right)-depth(root->left)>=2) {
	  	if(v>root->right->val) {
	  	//左旋root=LeftRotate(root); 
	  	}else {
	  	//先对其右子树右旋再左旋 root=RightLeftRotate(root); 
	  	   }
	       } 
	    } 
	}
     return root;
}

代码解析:出现不平衡时到底是执行LL、RR、LR、RL中的哪一种旋转,取决于插入的位置。可以根据值的大小关系来判断插入的位置。插入到不平衡节点的右子树的右子树上,自然是要执行LL旋转;插入到不平衡节点的左子树的左子树上,自然是要执行RR旋转;插入到不平衡节点的左子树的右子树上,自然是要执行LR旋转;插入到不平衡节点的右子树的左子树上,自然是要执行RL旋转。

四、AVL树的四种删除节点方式

AVL 树和二叉查找树的删除操作情况一致,都分为四种情况:

(1)删除叶子节点
(2)删除的节点只有左子树
(3)删除的节点只有右子树
(4)删除的节点既有左子树又有右子树

只不过 AVL 树在删除节点后需要重新检查平衡性并修正,同时,删除操作与插入操作后的平衡修正区别在于,插入操作后只需要对插入栈中的弹出的第一个非平衡节点进行修正,而删除操作需要修正栈中的所有非平衡节点。

删除操作的大致步骤如下:

(1)以前三种情况为基础尝试删除节点,并将访问节点入栈。
(2)如果尝试删除成功,则依次检查栈顶节点的平衡状态,遇到非平衡节点,即进行旋转平衡,直到栈空。
(3)如果尝试删除失败,证明是第四种情况。这时先找到被删除节点的右子树最小节点并删除它,将访问节点继续入栈。
(4)再依次检查栈顶节点的平衡状态和修正直到栈空。

对于删除操作造成的非平衡状态的修正,可以这样理解:对左或者右子树的删除操作相当于对右或者左子树的插入操作,然后再对应上插入的四种情况选择相应的旋转就好了。

五、平衡二叉树的性能分析

因为平衡二叉树也是二叉搜索树,回顾二叉搜索树中的操作复杂度,查询、插入和删除复杂度均为Log2N~N。平衡二叉树中查询复杂度影响因素自然为树的高度;插入节点操作可以拆分为两个步骤:查询节点位置,插入节点后平衡操作;删除节点操作同理可以拆分为两个步骤:查询节点位置,删除节点后平衡操作。

平衡调节过程中可能存在旋转操作,递归执行的次数则依赖于树的高度(可以优化为当前节点平衡因子不发生变化,则取消向上递归)。所以平衡二叉树中查询、插入和删除节点操作的复杂度依赖于树高。

平衡二叉树因为左右子树的平衡因子限制,所以不可能存在类似于斜树的情况,因为任一节点的左右子树高度差最大为一,且二叉树具有对称性,所以不妨设每个子树的左子树高度大于右子树高度。
数据结构之平衡二叉树
数据结构之平衡二叉树