JVM性能调优——GC优化
当Java程序性能达不到既定目标,且其他优化手段都已经穷尽时,通常需要调整垃圾回收器来进一步提高性能,称为GC优化。但GC算法复杂,影响GC性能的参数众多,且参数调整又依赖于应用各自的特点,这些因素很大程度上增加了GC优化的难度。即便如此,GC调优也不是无章可循,仍然有一些通用的思考方法。
一、参数基本策略
各分区的大小对GC的性能影响很大。如何将各分区调整到合适的大小,分析活跃数据的大小是很好的切入点。
活跃数据的大小是指,应用程序稳定运行时长期存活对象在堆中占用的空间大小,也就是Full GC后堆中老年代占用空间的大小。可以通过GC日志中Full GC之后老年代数据大小得出,比较准确的方法是在程序稳定后,多次获取GC数据,通过取平均值的方式计算活跃数据的大小。活跃数据和各分区之间的比例关系如下(见参考文献1):
例如,根据GC日志获得老年代的活跃数据大小为300M,那么各分区大小可以设为:
总堆:1200MB = 300MB × 4* 新生代:450MB = 300MB × 1.5* 老年代: 750MB = 1200MB - 450MB*
这部分设置仅仅是堆大小的初始值,后面的优化中,可能会调整这些值,具体情况取决于应用程序的特性和需求。
二、优化步骤
GC优化一般步骤可以概括为:确定目标、优化参数、验收结果。
确定目标
明确应用程序的系统需求是性能优化的基础,系统的需求是指应用程序运行时某方面的要求,譬如: - 高可用,可用性达到几个9。 - 低延迟,请求必须多少毫秒内完成响应。 - 高吞吐,每秒完成多少次事务。
由于笔者所在团队主要关注高可用和低延迟两项指标,所以接下来分析,如何量化GC时间和频率对于响应时间和可用性的影响。通过这个量化指标,可以计算出当前GC情况对服务的影响,也能评估出GC优化后对响应时间的收益,这两点对于低延迟服务很重要。
举例:假设单位时间T内发生一次持续25ms的GC,接口平均响应时间为50ms,且请求均匀到达,根据下图所示:
那么有(50ms+25ms)/T比例的请求会受GC影响,其中GC前的50ms内到达的请求都会增加25ms,GC期间的25ms内到达的请求,会增加0-25ms不等,如果时间T内发生N次GC,受GC影响请求占比=(接口响应时间+GC时间)×N/T 。可见无论降低单次GC时间还是降低GC次数N都可以有效减少GC对响应时间的影响。
优化
通过收集GC信息,结合系统需求,确定优化方案,例如选用合适的GC回收器、重新设置内存比例、调整JVM参数等。
进行调整后,将不同的优化方案分别应用到多台机器上,然后比较这些机器上GC的性能差异,有针对性的做出选择,再通过不断的试验和观察,找到最合适的参数。
验收优化结果
将修改应用到所有服务器,判断优化结果是否符合预期,总结相关经验。
接下来,我们通过三个案例来实践以上的优化流程和基本原则(本文中三个案例使用的垃圾回收器均为ParNew+CMS,CMS失败时Serial Old替补)。