欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

KMP算法详解及其Java实现

程序员文章站 2022-06-06 22:35:27
...

KMP算法,又称作“看猫片”算法(误),是一种改进的字符串模式匹配算法,可以在O(n+m)的时间复杂度以内完成字符串的匹配操作,其核心思想在于:当一趟匹配过程中出现字符不匹配时,不需要回溯主串的指针,而是利用已经得到的“部分匹配”,将模式串尽可能多地向右“滑动”一段距离,然后继续比较。

KMP算法详解及其Java实现
KMP(看猫片)算法

1. 朴素的字符串模式匹配算法

求一个字符串(模式串)在另一个字符串(主串)中的位置,称为字符串模式匹配。

在朴素的字符串模式匹配算法中,我们对主串S和模式串T分别设置指针i和j,假设字符串下标从0开始,初始时i和j分别指向每个串的第0个位置。在第n趟匹配开始时,i指向主串S中的第n-1个位置,j指向模式串T的第0个位置,然后逐个向后比较。若T中的每一个字符都与S中的字符相等,则称匹配成功,否则,当遇到某个字符不相等时,i重新指向S的第n个位置,j重新指向T的第0个位置,继续进行第n+1趟匹配。

例如,我们对模式串T=“abaabcac”和主串S=“abcabaabaabcacb”进行匹配。如图1.1,此时正在进行第4趟匹配,S[3…7]与T[0…4]均相等,但当i=8,j=5时,S[8]与T[5]不相等,匹配失败。于是,置i=4,j=0,相当于将模式串向右移动一位后,重新开始下一趟匹配,如图1.2。

KMP算法详解及其Java实现

图1.1 当i=8,j=5时,字符不相等,匹配失败

KMP算法详解及其Java实现

图1.2 将模式串向右移动一位后,重新开始下一趟匹配

利用此种方法进行字符串匹配,最坏情况下时间复杂度为O(n*m),其中n和m分别为主串和模式串的长度。

2. 改进的字符串模式匹配算法——KMP算法

在上面的例子中,我们可以看到,当i=8,j=5时,S[8]与T[5]不相等,于是置i=4,j=0,相当于将模式串向右移动一位,再开始下一趟匹配。然而,通过观察我们可以发现,之后的两趟匹配,即i=4,j=0以及i=5,j=0都是不必要的。这是因为,在之前的一趟匹配过程中,我们已经部分匹配了T的子串“abaab”。此时将T向右移动一位,则相当于对T中的“abaab……”与S中的“baab……”进行匹配,显然无法匹配成功。继续右移T,则相当于对T中的“abaab……”与S中的“aab……”进行匹配,依然无法匹配成功。只有当T向右移动3位后,此时对T中的“abaab……”与S中的“ab……”进行匹配,才会有成功的可能,也就有必要向后继续进行比较。如图2.1。

KMP算法详解及其Java实现

图2.1 匹配失败时,将T向右移动3位后,才有继续比较的必要

因此,当i=8,j=5,T的子串“abaab”已经匹配成功,而其后一位字符却不相等时,不必回溯i指针,置i=8,j=2,继续向后比较,相当于将T向右移动3位,并从T的第3位开始向后比较。如图2.2。

KMP算法详解及其Java实现

图2.2 匹配失败后,直接置i=8,j=2,继续向后比较

这就是KMP算法的基本思路。对于模式串T中的前j个字符组成的子串,设置数组next[j]存放一个值,当模式串T匹配至第j个字符时与主串不相等,则i指针不变,将j指针置为next[j]的值,然后继续进行比较。在上例中,串“abaab”为模式串T的前5个字符组成的子串,令next[5]=2,当i=8,j=5时,S[8]与T[5]不相等,于是置i=8,j=next[j]=next[5]=2,然后继续进行比较。

因此,KMP算法的核心在于求出数组next,即模式串T中每一个长度为j (0<j<T.length) 的前缀所对应的next[j]的值。

next数组求解算法

在求解next数组前,我们首先需要理解next数组的含义。回到前面的例子,当T的子串“abaab”的下一个字符与主串不相等时,主串的指针i不变,j回溯至2,指向T的第3个字符,其本质是因为串“abaab”的前缀和后缀有一个长度为2的最长公共串“ab”,因此我们省略了前缀“ab”和后缀“ab”的比较过程,直接对它们的后一个字符,即T[2]和S[8]进行比较。

再看另一个例子,假设有模式串T=“abacaabadad”,其已部分匹配完T[0…7],即“abacaaba”,在匹配T[8]时遇到匹配失败,因T[0…7]的前缀和后缀有长度为3的最长公共串“aba”,因此next[8]=3,置j=next[j]=next[8]=3,i不变,然后从T[3],即T的第4个字符开始比较。如图2.3。

KMP算法详解及其Java实现

图2.3 匹配T[8]时失败,i不变,j回溯至3

总之,对于模式串T,next[j]代表了T的前j个字符组成的子串中,其前缀和后缀的最长公共串的长度。

求解字符串T的next数组的算法如下:

  1. next[0]=-1, next[1]=0。
  2. 在求解next[j]时,令k=next[j-1],
  3. 比较T[j-1]与T[k]的值,
    a. 若T[j-1]等于T[k],则next[j]=k+1。
    b. 若T[j-1]不等于T[k],令k=next[k],若k等于-1,则next[j]=0,否则跳至3。

下面以模式串T=“abaabcac”为例,给出求next数组的过程:

  1. next[0]=-1, next[1]=0。
  2. 当j=2时,k=next[j-1]=next[1]=0,由于T[j-1]=T[1]=‘b’,T[k]=T[0]=‘a’,T[j-1]不等于T[k],令k=next[k]=next[0]=-1,因此next[2]=0。
  3. 当j=3时,k=next[j-1]=next[2]=0,由于T[j-1]=T[2]=‘a’,T[k]=T[0]=‘a’,T[j-1]等于T[k],因此next[3]=k+1=1。
  4. 当j=4时,k=next[j-1]=next[3]=1,由于T[j-1]=T[3]=‘a’,T[k]=T[1]=‘b’,T[j-1]不等于T[k],令k=next[k]=next[1]=0。此时T[k]=T[0]=‘a’,T[j-1]等于T[k],因此next[3]=k+1=1。
  5. 当j=5时,k=next[j-1]=next[4]=1,由于T[j-1]=T[4]=‘b’,T[k]=T[1]=‘b’,T[j-1]等于T[k],因此next[5]=k+1=2。
  6. 当j=6时,k=next[j-1]=next[5]=2,由于T[j-1]=T[5]=‘c’,T[k]=T[2]=‘a’,T[j-1]不等于T[k],令k=next[k]=next[2]=0。此时T[k]=T[0]=‘a’,T[j-1]不等于T[k],再令k=next[k]=next[0]=-1,因此next[6]=0。
  7. 当j=7时,k=next[j-1]=next[6]=0,由于T[j-1]=T[6]=‘a’,T[k]=T[0]=‘a’,T[j-1]等于T[k],因此next[7]=k+1=1。

将next数组全部求出之后,只需在简单的匹配算法上稍作修改,便得到了KMP的匹配算法:当模式串T匹配至第j个字符时匹配失败,i指针不变,将j指针置为next[j]的值,若j的值为-1,则将i和j同时加1。随后继续进行逐个的比较。

下面以模式串T=“abaabcac”和主串S=“abcabaabaabcacb”进行匹配为例,给出KMP匹配算法的全过程。
之前已经求得模式串T的next数组为[-1, 0, 0, 1, 1, 2, 0, 1]。
1. 初始时,i=0,j=0,匹配成功。

KMP算法详解及其Java实现

2. i=1,j=1,匹配成功。
KMP算法详解及其Java实现

3. i=2,j=2,匹配失败。
KMP算法详解及其Java实现

4. i=2,j=next[2]=0,匹配失败。
KMP算法详解及其Java实现

5. i=2,j=next[0]=-1,匹配失败。
KMP算法详解及其Java实现

6. i=2+1=3,j=-1+1=0,匹配成功。
KMP算法详解及其Java实现

7. i=4,j=1,匹配成功。
KMP算法详解及其Java实现

8. i=5,j=2,匹配成功。
KMP算法详解及其Java实现

9. i=6,j=3,匹配成功。
KMP算法详解及其Java实现

10. i=7,j=4,匹配成功。
KMP算法详解及其Java实现

11. i=8,j=5,匹配失败。
KMP算法详解及其Java实现

12. i=8,j=next[5]=2,匹配成功。
KMP算法详解及其Java实现

13. 继续向后比较,中间过程均匹配成功,故不再赘述,当i=13,j=7时,模式串匹配完成。
KMP算法详解及其Java实现

以上就是KMP匹配算法的全过程。总结一下,KMP算法的实质就是以空间换时间,在匹配之前将模式串的一些信息存储起来(next数组),在随后的匹配过程中利用这些信息减少不必要的匹配次数,以提高匹配效率。在实际的应用过程中,简单模式匹配算法的执行时间常常接近于KMP算法,仅当主串与模式串有很多“部分匹配”时,KMP算法才能显著提升性能。

3. KMP算法的Java实现

下面给出KMP算法的Java代码。整个算法分为两部分,一是next数组的求解,二是KMP匹配过程。

public class KMP {

    /**
     * 求出一个字符数组的next数组
     * @param t 字符数组
     * @return next数组
     */
    public static int[] getNextArray(char[] t) {
        int[] next = new int[t.length];
        next[0] = -1;
        next[1] = 0;
        int k;
        for (int j = 2; j < t.length; j++) {
            k=next[j-1];
            while (k!=-1) {
                if (t[j - 1] == t[k]) {
                    next[j] = k + 1;
                    break;
                }
                else {
                    k = next[k];
                }
                next[j] = 0;  //当k==-1而跳出循环时,next[j] = 0,否则next[j]会在break之前被赋值
            }
        }
        return next;
    }

    /**
     * 对主串s和模式串t进行KMP模式匹配
     * @param s 主串
     * @param t 模式串
     * @return 若匹配成功,返回t在s中的位置(第一个相同字符对应的位置),若匹配失败,返回-1
     */
    public static int kmpMatch(String s, String t){
        char[] s_arr = s.toCharArray();
        char[] t_arr = t.toCharArray();
        int[] next = getNextArray(t_arr);
        int i = 0, j = 0;
        while (i<s_arr.length && j<t_arr.length){
            if(j == -1 || s_arr[i]==t_arr[j]){
                i++;
                j++;
            }
            else
                j = next[j];
        }
        if(j == t_arr.length)
            return i-j;
        else
            return -1;
    }

    public static void main(String[] args) {
        System.out.println(kmpMatch("abcabaabaabcacb", "abaabcac"));
    }

}

参考资料及致谢

在学习KMP算法思路的过程中,我大量参考了“王道考研系列”的《数据结构联考复习指导》一书,以及CSDN博主v_JULY_v的文章:从头到尾彻底理解KMP,特此鸣谢。

同时感谢微博博主@回忆专用小马甲和实验室的大红袍CocoXu提供的大量猫片,让我在学习KMP算法的过程中拥有持续的动力。

文章中如有错误,欢迎指正!