双队列的一种实现
程序员文章站
2022-06-06 20:56:23
...
介绍
双队列是一种高效的内存数据结构,在多线程编程中,能保证生产者线程的写入和消费者的读出尽量做到最低的影响,避免了共享队列的锁开销。本文将介绍一种双队列的设计,并给出实现代码,然后会举例使用的场景。该双队列在项目中使用,性能也得到了验证。
设计
接下来具体介绍双队列的设计,并且会粘贴少量方法代码,帮助介绍。
本文中讲述的双队列,本质上是两个数组保存写入的Object,一个数组负责写入,另一个被消费者读出,两个数组都对应一个重入锁。数组内写入的数据会被计数。
public class DoubleCachedQueue<T> extends AbstractQueue<T> implements
BlockingQueue<T>, java.io.Serializable {
private static final long serialVersionUID = 1L;
private static int default_line_limit = 1000;
private static long max_cache_size = 67108864L;
private int lineLimit;
private long cacheSize;
private T[] itemsA;
private T[] itemsB;
private ReentrantLock readLock, writeLock;
private Condition notFull;
private Condition awake;
/**
* writeArray : in reader's eyes, reader get data from data source and write
* data to this line array. readArray : in writer's eyes, writer put data to
* data destination from this line array.
*
* Because of this is doubleQueue mechanism, the two line will exchange when
* time is suitable.
*
*/
private T[] writeArray, readArray;
private volatile int writeCount, readCount;
private int writeArrayTP, readArrayHP;
private volatile boolean closed = false;
private int spillSize = 0;
private long lineRx = 0;
private long lineTx = 0;
队列实现了阻塞队列的接口,所以在向队列offer数据的时候是阻塞的,同样,取出操作poll也会阻塞。两个数组会在适当的时候进行queueSwitch操作。queueSwitch的条件就是当读者把queue读空了之后,且写入的queue此时不为空的时候,两个queue就会进行交换。在交换的时候,写入queue会被上锁,此时生产者不能让队列里写入数据。一般情况下,queue互换其实就是两个数组的引用互换,将相应的计数器也重置,写队列的计数器此时就清零了,因为queue交换是因为读队列已经被读空。
private long queueSwitch(long timeout, boolean isInfinite)
throws InterruptedException {
System.out.println("queue switch");
writeLock.lock();
try {
if (writeCount <= 0) {
if (closed) {
return -2;
}
try {
if (isInfinite && timeout <= 0) {
awake.await();
return -1;
} else {
return awake.awaitNanos(timeout);
}
} catch (InterruptedException ie) {
awake.signal();
throw ie;
}
} else {
T[] tmpArray = readArray;
readArray = writeArray;
writeArray = tmpArray;
readCount = writeCount;
readArrayHP = 0;
writeCount = 0;
writeArrayTP = 0;
notFull.signal();
// logger.debug("Queue switch successfully!");
return -1;
}
} finally {
writeLock.unlock();
}
}
上面queue交换的时候,可以看到当要被交换的写队列也已经为空的时候,会做一次检查。如果此时queue已经被显示地关闭了,那么poll操作就会返回空,读者此时应该检查queue是否已经被closed了,若已经closed了,那么读者已经把queue里的数据读完了。这里的显示close是我们给双队列加的一个状态,close这件事的作用是为了让读者知道:生产者已经停止往queue里写新数据了,但是queue里其实可能还有未取完的数据(在写queue里,此时还差一次queue switch),你往queue poll取数据的时候,如果取到空了,那么应该做一次check,如果queue已经关闭了,那么读者就知道本次读的任务完全结束了。反过来,close状态其实不影响写,生产者如果还想写的话,其实也是可以的,但是我不推荐这么做。
public void close() {
writeLock.lock();
try {
closed = true;
//System.out.println(this);
awake.signalAll();
} finally {
writeLock.unlock();
}
}
如果没有这个close标志位的话,可能就需要消费者放入一个EOF让读者知道。这在只有一个生产者和一个消费者的情况下是可行的,但是如果是一个多对一,一对多,甚至多对多的情况呢?一对一的情况是最简单的,也是双队列被创造出来最合适的场景。因为双队列完全分离了一个生产者和一个消费者的锁争抢情况,各自只要获得自己的读/写队列的锁就可以了。在本文阐述的双队列中,唯一产生一些开销的就是queue swtich的情况,如果queue频繁交换的话,还是会产生一些性能开销的。
一对多
上面已经大致介绍了双队列的读写。在实际项目中,一对多的场景需要注意的地方有两:
- 单个生产者需要在结束的时候关闭queue
- 多个消费者需要知道任务结束(知道其他线程已经完成任务)
消费者之间或者外部有一方需要知道各个消费者线程的存活情况,这样才能知道本次任务完成。比如如果外面有一个上帝的话,可以加一个CountDownLatch计数,每个消费者完成后就countDown一次,外部调用await()直到大家都已经退出,那么整个任务结束。如果没有上帝,线程之间互相知道对方情况的话,我的做法是让生产者放入一个EOF,当某线程取到EOF的时候,他知道自己是第一个遇到尽头的人,他会置一个布尔,而其他线程在取到空的时候会检查该布尔值,这样就能知道是否已经有小伙伴已经拿到EOF了,那么这时候就可以countDown了,而拿到EOF的线程进程countDown后就await(),最后退出。
下面是我自己针对这种场景,使用双队列的方式,其中的fromQueue是一个ConcurrentLinkedQueue,大家可以忽略,toQueue是双队列,可以注意一下用法。特别是往里面写的时候,需要while循环重试直到写入成功。
@Override
public void run() {
long start = System.currentTimeMillis();
log.debug(Thread.currentThread() + " Unpacker started at " + start);
Random r = new Random(start);
Bundle bundle = null;
boolean shoudShutdown = false;
try {
while(!shoudShutdown) {
bundle = (Bundle) fromQueue.poll();
if (bundle == null) {
if (seeEOF.get()) {
// 当取到空,并且其他线程已经取到EOF,那么本线程将Latch减1,并退出循环
latch.countDown();
shoudShutdown = true;
} else {
// 如果EOF还没被取到,本线程小睡一会后继续取
try {
sleep(r.nextInt(10));
} catch (InterruptedException e) {
log.error("Interrupted when taking a nap", e);
}
}
} else if (!bundle.isEof()) {
// bundle非空且非EOF,则往双队列写入一个Bundle
byte[] lineBytes = BundleUtil.getDecompressedData(bundle);
// 放入双队列时,若offer失败则重试
while (!toQueue.offer(new UnCompressedBundle(bundle.getId(), ByteUtil.bytes2Lines(lineBytes, lineDelim), bundle.getIndex(), bundle.getJobId()))) {
log.info("Unpacker put failed, will retry");
}
log.info("After enqueue, queue size is " + toQueue.size());
} else {
// Unpacker获得到了EOF
seeEOF.set(true);
// 自己将Lacth减1,并等待其他线程退出
latch.countDown();
try {
latch.await();
} catch (InterruptedException e) {
log.error("Interrupted when waiting the latch ");
}
// 其他线程已经退出,本线程放入EOF
while (!toQueue.offer(new UnCompressedBundle(-1L, new Line[0], -1L, -1L))) {
log.info("Unpacker put EOF failed, will retry");
}
// 关闭Queue
toQueue.close();
// 退出循环
shoudShutdown = true;
}
}
log.debug(Thread.currentThread() + " Unpacker finished in " + (System.currentTimeMillis()-start) + " ms");
} catch (Exception e) {
log.error("Exception when unpacker is running ", e);
// 将latch减1,表示自己异常退出,且不再工作
// latch.countDown();
log.debug(Thread.currentThread() + " Unpacker occured exception and stopped. ");
} finally {
}
}
多对一
多个生产者的情况下,写入队列无可避免发送锁争抢,但是能保证消费者的稳定读出过程。没有什么特殊处理的地方,这里就不啰嗦了。
总结分析
本文介绍了一种经典双队列的设计和实现,也给出了一些代码演示。文章末尾我会贴出整个双队列的代码实现,需要的同学也可以留言,我把.java发给你。如果使用的时候有发现问题,不吝赐教,这个双队列的实现也还不是很完美。使用的时候也存在需要注意的地方。
其实双队列的目的还是在于让写和读互相没有影响,而且更加照顾了写的速度。因为一般写的速度可能会比较快,而读的人读出之后还会做一些额外的处理,所以写的这一方借助双队列,可以持续写的过程,而且如果读的一方慢的话,可以多起几个消费者线程,就像"一对多"场景里阐述的那样来使用双队列。
下面是整个实现。各位可以仔细看看,发现问题一定记得通知我 :)
import java.util.AbstractQueue;
import java.util.Collection;
import java.util.Iterator;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.ReentrantLock;
import lombok.ToString;
import lombok.extern.log4j.Log4j;
/**
* Represents a region with two swap spaces, one for storing data which from
* data source, the other one for storing data which will be transferred to data
* destination.
* <br>
* A classical DoubleCachedQueue, In beginning, space A and space B both
* empty, then loading task begin to load data to space A, when A is almost
* full, let the data from data source being loaded to space B, then dumping
* task begin to dump data from space A to data source. When space A is empty,
* switch the two spaces for load and dump task. Repeat the above operation.
*
*/
@Log4j
@ToString
public class DoubleCachedQueue<T> extends AbstractQueue<T> implements
BlockingQueue<T>, java.io.Serializable {
private static final long serialVersionUID = 1L;
private static int default_line_limit = 1000;
private static long max_cache_size = 67108864L;
private int lineLimit;
private long cacheSize;
private T[] itemsA;
private T[] itemsB;
private ReentrantLock readLock, writeLock;
private Condition notFull;
private Condition awake;
/**
* writeArray : in reader's eyes, reader get data from data source and write
* data to this line array. readArray : in writer's eyes, writer put data to
* data destination from this line array.
*
* Because of this is doubleQueue mechanism, the two line will exchange when
* time is suitable.
*
*/
private T[] writeArray, readArray;
private volatile int writeCount, readCount;
private int writeArrayTP, readArrayHP;
private volatile boolean closed = false;
private int spillSize = 0;
private long lineRx = 0;
private long lineTx = 0;
/**
* Get info of line number in {@link DoubleCachedQueue} space.
*
* @return Information of line number.
*
*/
public String info() {
return String.format("Write Array: %s/%s; Read Array: %s/%s", writeCount, writeArray.length, readCount, readArray.length);
}
/**
* Use the two parameters to construct a {@link DoubleCachedQueue} which hold the
* swap areas.
*
* @param lineLimit
* Limit of the line number the {@link DoubleCachedQueue} can hold.
*
* @param byteLimit
* Limit of the bytes the {@link DoubleCachedQueue} can hold.
*
*/
public DoubleCachedQueue(int lineLimit) {
if (lineLimit <= 0) {
this.lineLimit = default_line_limit;
}else{
this.lineLimit = lineLimit;
}
itemsA = (T[])new Object[lineLimit];
itemsB = (T[])new Object[lineLimit];
readLock = new ReentrantLock();
writeLock = new ReentrantLock();
notFull = writeLock.newCondition();
awake = writeLock.newCondition();
readArray = itemsA;
writeArray = itemsB;
spillSize = lineLimit * 8 / 10;
}
public DoubleCachedQueue(long cacheSize){
if (cacheSize <= 0) {
throw new IllegalArgumentException(
"Queue initial capacity can't less than 0!");
}
this.cacheSize = cacheSize > max_cache_size ? max_cache_size : cacheSize;
readLock = new ReentrantLock();
writeLock = new ReentrantLock();
notFull = writeLock.newCondition();
awake = writeLock.newCondition();
readArray = itemsA;
writeArray = itemsB;
spillSize = lineLimit * 8 / 10;
}
/**
* Get line number of the {@link DoubleCachedQueue}
*
* @return lineLimit Limit of the line number the {@link DoubleCachedQueue} can
* hold.
*
*/
public int getLineLimit() {
return lineLimit;
}
/**
* Set line number of the {@link DoubleCachedQueue}.
*
* @param capacity
* Limit of the line number the {@link DoubleCachedQueue} can hold.
*
*/
public void setLineLimit(int capacity) {
this.lineLimit = capacity;
}
/**
* Insert one line of record to a apace which buffers the swap data.
*
* @param line
* The inserted line.
*
*/
private void insert(T line) {
writeArray[writeArrayTP] = line;
++writeArrayTP;
++writeCount;
++lineRx;
}
/**
* Insert a line array(appointed the limit of array size) of data to a apace
* which buffers the swap data.
*
* @param lines
* Inserted line array.
*
* @param size
* Limit of inserted size of the line array.
*
*/
private void insert(T[] lines, int size) {
if(size > 0){
System.arraycopy(lines, 0, writeArray, writeArrayTP, size);
writeArrayTP = writeArrayTP + size;
writeCount = writeCount + size;
lineRx = lineRx + size;
}
// for (int i = 0; i < size; ++i) {
// writeArray[writeArrayTP] = lines[i];
// ++writeArrayTP;
// ++writeCount;
// ++lineRx;
// if(lines[i] != null && lines[i].getLine() != null){
// byteRx += lines[i].getLine().length();
// }
// }
}
/**
* Extract one line of record from the space which contains current data.
*
* @return line A line of data.
*
*/
private T extract() {
T e = readArray[readArrayHP];
readArray[readArrayHP] = null;
++readArrayHP;
--readCount;
++lineTx;
return e;
}
/**
* Extract a line array of data from the space which contains current data.
*
* @param ea
* @return Extracted line number of data.
*
*/
private int extract(T[] ea) {
int readsize = Math.min(ea.length, readCount);
if(readsize > 0){
readCount = readCount - readsize;
lineTx = lineTx + readsize;
System.arraycopy(readArray, readArrayHP, ea, 0, readsize);
readArrayHP = readArrayHP + readsize;
}
// for (int i = 0; i < readsize; ++i) {
// ea[i] = readArray[readArrayHP];
// readArray[readArrayHP] = null;
// ++readArrayHP;
// --readCount;
// ++lineTx;
// }
return readsize;
}
/**
* switch condition: read queue is empty && write queue is not empty.
* Notice:This function can only be invoked after readLock is grabbed,or may
* cause dead lock.
*
* @param timeout
*
* @param isInfinite
* whether need to wait forever until some other thread awake it.
*
* @return
*
* @throws InterruptedException
*
*/
private long queueSwitch(long timeout, boolean isInfinite)
throws InterruptedException {
System.out.println("queue switch");
writeLock.lock();
try {
if (writeCount <= 0) {
if (closed) {
return -2;
}
try {
if (isInfinite && timeout <= 0) {
awake.await();
return -1;
} else {
return awake.awaitNanos(timeout);
}
} catch (InterruptedException ie) {
awake.signal();
throw ie;
}
} else {
T[] tmpArray = readArray;
readArray = writeArray;
writeArray = tmpArray;
readCount = writeCount;
readArrayHP = 0;
writeCount = 0;
writeArrayTP = 0;
notFull.signal();
// logger.debug("Queue switch successfully!");
return -1;
}
} finally {
writeLock.unlock();
}
}
/**
* If exists write space, it will return true, and write one line to the
* space. otherwise, it will try to do that in a appointed time,when time is
* out if still failed, return false.
*
* @param line
* a Line.
*
* @param timeout
* appointed limit time
*
* @param unit
* time unit
*
* @return True if success,False if failed.
*
*/
public boolean offer(T line, long timeout, TimeUnit unit)
throws InterruptedException {
if (line == null) {
throw new NullPointerException();
}
long nanoTime = unit.toNanos(timeout);
writeLock.lockInterruptibly();
if(itemsA == null || itemsB == null){
initArray(line);
}
try {
for (;;) {
if (writeCount < writeArray.length) {
insert(line);
if (writeCount == 1) {
awake.signal();
}
return true;
}
// Time out
if (nanoTime <= 0) {
return false;
}
// keep waiting
try {
nanoTime = notFull.awaitNanos(nanoTime);
} catch (InterruptedException ie) {
notFull.signal();
throw ie;
}
}
} finally {
writeLock.unlock();
}
}
private void initArray(T line) {
long recordLength = computeSize(line);
long size = cacheSize/recordLength;
if(size <= 0){
size = default_line_limit;
}
lineLimit = (int) size;
itemsA = (T[])new Object[(int) size];
itemsB = (T[])new Object[(int) size];
readArray = itemsA;
writeArray = itemsB;
}
public long computeSize(T line){
return 1;
}
/**
* If exists write space, it will return true, and write a line array to the
* space.<br>
* otherwise, it will try to do that in a appointed time,when time out if
* still failed, return false.
*
* @param lines
* line array contains lines of data
*
* @param size
* Line number needs to write to the space.
*
* @param timeout
* appointed limit time
*
* @param unit
* time unit
*
* @return status of this operation, true or false.
*
* @throws InterruptedException
* if being interrupted during the try limit time.
*
*/
public boolean offer(T[] lines, int size, long timeout, TimeUnit unit)
throws InterruptedException {
if (lines == null || lines.length == 0) {
throw new NullPointerException();
}
long nanoTime = unit.toNanos(timeout);
writeLock.lockInterruptibly();
if(itemsA == null || itemsB == null){
initArray(lines[0]);
}
try {
for (;;) {
if (writeCount + size <= writeArray.length) {
insert(lines, size);
if (writeCount >= spillSize) {
awake.signalAll();
}
return true;
}
// Time out
if (nanoTime <= 0) {
return false;
}
// keep waiting
try {
nanoTime = notFull.awaitNanos(nanoTime);
} catch (InterruptedException ie) {
notFull.signal();
throw ie;
}
}
} finally {
writeLock.unlock();
}
}
/**
* Close the synchronized lock and one inner state.
*
*/
public void close() {
writeLock.lock();
try {
closed = true;
//System.out.println(this);
awake.signalAll();
} finally {
writeLock.unlock();
}
}
public boolean isClosed() {
return closed;
}
/**
*
*
* @param timeout
* appointed limit time
*
* @param unit
* time unit
*/
public T poll(long timeout, TimeUnit unit) throws InterruptedException {
long nanoTime = unit.toNanos(timeout);
readLock.lockInterruptibly();
try {
for (;;) {
if (readCount > 0) {
return extract();
}
if (nanoTime <= 0) {
return null;
}
nanoTime = queueSwitch(nanoTime, true);
}
} finally {
readLock.unlock();
}
}
/**
*
* @param ea
* line buffer
*
*
* @param timeout
* a appointed limit time
*
* @param unit
* a time unit
*
* @return line number of data.if less or equal than 0, means fail.
*
* @throws InterruptedException
* if being interrupted during the try limit time.
*/
public int poll(T[] ea, long timeout, TimeUnit unit)
throws InterruptedException {
long nanoTime = unit.toNanos(timeout);
readLock.lockInterruptibly();
try {
for (;;) {
if (readCount > 0) {
return extract(ea);
}
if (nanoTime == -2) {
return -1;
}
if (nanoTime <= 0) {
return 0;
}
nanoTime = queueSwitch(nanoTime, false);
}
} finally {
readLock.unlock();
}
}
public Iterator<T> iterator() {
return null;
}
/**
* Get size of {@link Storage} in bytes.
*
* @return Storage size.
*
* */
@Override
public int size() {
return (writeCount + readCount);
}
@Override
public int drainTo(Collection<? super T> c) {
return 0;
}
@Override
public int drainTo(Collection<? super T> c, int maxElements) {
return 0;
}
/**
* If exists write space, it will return true, and write one line to the
* space.<br>
* otherwise, it will try to do that in a appointed time(20
* milliseconds),when time out if still failed, return false.
*
* @param line
* a Line.
*
* @see DoubleCachedQueue#offer(Line, long, TimeUnit)
*
*/
@Override
public boolean offer(T line) {
try {
return offer(line, 20, TimeUnit.MILLISECONDS);
} catch (InterruptedException e1) {
log.debug(e1.getMessage(), e1);
}
return false;
}
@Override
public void put(T e) throws InterruptedException {
}
@Override
public int remainingCapacity() {
return 0;
}
@Override
public T take() throws InterruptedException {
return null;
}
@Override
public T peek() {
return null;
}
@Override
public T poll() {
try {
return poll(1*1000, TimeUnit.MILLISECONDS);
} catch (InterruptedException e) {
log.debug(e.getMessage(), e);
}
return null;
}
}
(全文完)
上一篇: 环形队列-基于队头指针和队列中元素的个数的另一种实现
下一篇: 一种二叉搜索树实现