欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Sort源代码注释  

程序员文章站 2022-06-06 18:23:37
...
package org.apache.hadoop.examples;

import java.io.IOException;
import java.net.URI;
import java.util.*;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.filecache.DistributedCache;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.BytesWritable;
import org.apache.hadoop.io.Writable;
import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.mapred.*;
import org.apache.hadoop.mapred.lib.IdentityMapper;
import org.apache.hadoop.mapred.lib.IdentityReducer;
import org.apache.hadoop.mapred.lib.InputSampler;
import org.apache.hadoop.mapred.lib.TotalOrderPartitioner;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;

/**
 hadoop 的map/reduce例子,排序,由于map传给reduce的中间结果是排序的,所以这个例子不用写mapper和reducer。都用默认的map/reduce的实现,
IdentityMapper和IdentityReducer。例子中可以用排序采样器TotalOrderPartitioner,参数设置可以是 -totalOrder 0.1 10000 10
 * This is the trivial map/reduce program that does absolutely nothing
 * other than use the framework to fragment and sort the input values.
 *
 * To run: bin/hadoop jar build/hadoop-examples.jar sort
 *            [-m <i>maps</i>] [-r <i>reduces</i>]
 *            [-inFormat <i>input format class</i>] 
 *            [-outFormat <i>output format class</i>] 
 *            [-outKey <i>output key class</i>] 
 *            [-outValue <i>output value class</i>] 
 *            [-totalOrder <i>pcnt</i> <i>num samples</i> <i>max splits</i>]
 *            <i>in-dir</i> <i>out-dir</i> 
 */
public class Sort<K,V> extends Configured implements Tool {
  private RunningJob jobResult = null;

  static int printUsage() {
    System.out.println("sort [-m <maps>] [-r <reduces>] " +
                       "[-inFormat <input format class>] " +
                       "[-outFormat <output format class>] " + 
                       "[-outKey <output key class>] " +
                       "[-outValue <output value class>] " +
                       "[-totalOrder <pcnt> <num samples> <max splits>] " +
                       "<input> <output>");
    ToolRunner.printGenericCommandUsage(System.out);
    return -1;
  }

  /**driver代码
   * The main driver for sort program.
   * Invoke this method to submit the map/reduce job.
   * @throws IOException When there is communication problems with the 
   *                     job tracker.
   */
  public int run(String[] args) throws Exception {

    JobConf jobConf = new JobConf(getConf(), Sort.class);
    jobConf.setJobName("sorter");

    jobConf.setMapperClass(IdentityMapper.class);  //设置mapper      
    jobConf.setReducerClass(IdentityReducer.class);//设置reducer

    JobClient client = new JobClient(jobConf);
    ClusterStatus cluster = client.getClusterStatus();//获得集群的状态
    int num_reduces = (int) (cluster.getMaxReduceTasks() * 0.9);
    String sort_reduces = jobConf.get("test.sort.reduces_per_host");
    if (sort_reduces != null) {
       num_reduces = cluster.getTaskTrackers() * 
                       Integer.parseInt(sort_reduces);
    }
    Class<? extends InputFormat> inputFormatClass = 
      SequenceFileInputFormat.class;
    Class<? extends OutputFormat> outputFormatClass = 
      SequenceFileOutputFormat.class;
    Class<? extends WritableComparable> outputKeyClass = BytesWritable.class;
    Class<? extends Writable> outputValueClass = BytesWritable.class;
    List<String> otherArgs = new ArrayList<String>();
    InputSampler.Sampler<K,V> sampler = null;
    for(int i=0; i < args.length; ++i) {
      try {
        if ("-m".equals(args[i])) {
          jobConf.setNumMapTasks(Integer.parseInt(args[++i]));
        } else if ("-r".equals(args[i])) {
          num_reduces = Integer.parseInt(args[++i]);
        } else if ("-inFormat".equals(args[i])) {
          inputFormatClass = 
            Class.forName(args[++i]).asSubclass(InputFormat.class);
        } else if ("-outFormat".equals(args[i])) {
          outputFormatClass = 
            Class.forName(args[++i]).asSubclass(OutputFormat.class);
        } else if ("-outKey".equals(args[i])) {
          outputKeyClass = 
            Class.forName(args[++i]).asSubclass(WritableComparable.class);
        } else if ("-outValue".equals(args[i])) {
          outputValueClass = 
            Class.forName(args[++i]).asSubclass(Writable.class);
        } else if ("-totalOrder".equals(args[i])) { //设置采样器3个参数
          double pcnt = Double.parseDouble(args[++i]);
          int numSamples = Integer.parseInt(args[++i]);
          int maxSplits = Integer.parseInt(args[++i]);
          if (0 >= maxSplits) maxSplits = Integer.MAX_VALUE;
          sampler =
            new InputSampler.RandomSampler<K,V>(pcnt, numSamples, maxSplits);
        } else {
          otherArgs.add(args[i]);
        }
      } catch (NumberFormatException except) {
        System.out.println("ERROR: Integer expected instead of " + args[i]);
        return printUsage();
      } catch (ArrayIndexOutOfBoundsException except) {
        System.out.println("ERROR: Required parameter missing from " +
            args[i-1]);
        return printUsage(); // exits
      }
    }

    // Set user-supplied (possibly default) job configs
    jobConf.setNumReduceTasks(num_reduces);

    jobConf.setInputFormat(inputFormatClass);
    jobConf.setOutputFormat(outputFormatClass);

    jobConf.setOutputKeyClass(outputKeyClass);
    jobConf.setOutputValueClass(outputValueClass);

    // Make sure there are exactly 2 parameters left.
    if (otherArgs.size() != 2) {
      System.out.println("ERROR: Wrong number of parameters: " +
          otherArgs.size() + " instead of 2.");
      return printUsage();
    }
    FileInputFormat.setInputPaths(jobConf, otherArgs.get(0));
    FileOutputFormat.setOutputPath(jobConf, new Path(otherArgs.get(1)));

    if (sampler != null) {
      System.out.println("Sampling input to effect total-order sort...");
      jobConf.setPartitionerClass(TotalOrderPartitioner.class);//设置采样器
      Path inputDir = FileInputFormat.getInputPaths(jobConf)[0];
      inputDir = inputDir.makeQualified(inputDir.getFileSystem(jobConf));
      Path partitionFile = new Path(inputDir, "_sortPartitioning");
      TotalOrderPartitioner.setPartitionFile(jobConf, partitionFile);//采样设置采样文件
      InputSampler.<K,V>writePartitionFile(jobConf, sampler);
      URI partitionUri = new URI(partitionFile.toString() +
                                 "#" + "_sortPartitioning");
      DistributedCache.addCacheFile(partitionUri, jobConf);
      DistributedCache.createSymlink(jobConf);
    }

    System.out.println("Running on " +
        cluster.getTaskTrackers() +
        " nodes to sort from " + 
        FileInputFormat.getInputPaths(jobConf)[0] + " into " +
        FileOutputFormat.getOutputPath(jobConf) +
        " with " + num_reduces + " reduces.");
    Date startTime = new Date();
    System.out.println("Job started: " + startTime);
    jobResult = JobClient.runJob(jobConf);
    Date end_time = new Date();
    System.out.println("Job ended: " + end_time);
    System.out.println("The job took " + 
        (end_time.getTime() - startTime.getTime()) /1000 + " seconds.");
    return 0;
  }



  public static void main(String[] args) throws Exception {
    int res = ToolRunner.run(new Configuration(), new Sort(), args);
    System.exit(res);
  }

  /**
   * Get the last job that was run using this instance.
   * @return the results of the last job that was run
   */
  public RunningJob getResult() {
    return jobResult;
  }
}