欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Pytorch学习笔记(一)

程序员文章站 2022-06-06 11:22:58
...

涉及资源
1.官网DEEP LEARNING WITH PYTORCH: A 60 MINUTE BLITZ
2.莫烦python 个人网站b站视频参考代码

本周学习内容:
Numpy torch对比
激励函数
pytorch实现Regression
pytorch实现Classification
pytorch快速搭建法实现Classification
pytorch实现网络的保存与提取
pytorch实现batch_train
pytorch实现optimizer性能比对
pytorch实现CNN,识别MNIST数据集

环境配置:
python=3.7; torch=1.6.0; torchvision=0.7.0

1、Regression

import torch
from torch.autograd import Variable
import torch.nn.functional as F # 拿到一些激励函数
import matplotlib.pyplot as plt

## data
x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1) # unsqueeze多加一维,因为Variable输入为二维
y = x.pow(2) + 0.2 * torch.rand(x.size())
# x, y = Variable(x), Variable(y) # 放在Varible的篮子里

# plt.scatter(x.data.numpy(), y.data.numpy())
# plt.show()

## NET
class Net(torch.nn.Module): # 继承torch的模块
    def __init__(self, n_feature, n_hidden, n_output):# 定义层
        super(Net, self).__init__()# 调用父类的初始化
        self.hidden = torch.nn.Linear(n_feature, n_hidden)
        self.predict = torch.nn.Linear(n_hidden, n_output)

    def forward(self, x):# 前向传递,搭建神经网络,x = inputData
        x = F. relu(self.hidden(x))
        x = self.predict(x) # 回归预测的时候一般不用激励函数,加了relu无法预测负值
        return x

## 训练 + 可视化过程
net = Net(1, 15, 1)
print(net)

plt.ion() # 实时打印
plt.show()

optimizer = torch.optim.SGD(net.parameters(), lr=0.5) # 网络优化.lr一般小于1
# loss_func = F.mse_loss()# 均方差

for t in range(100):# 训练100步
    prediction = net(x)# output

    loss = F.mse_loss(prediction, y)
    # 优化
    optimizer.zero_grad() # clear gradients for this training 
    loss.backward() # backpropagation, compute gradients
    optimizer.step() # apply gradients

    if t % 5 == 0:# 学习五步打印一次
        plt.cla()# 清空
        plt.scatter(x.data.numpy(), y.data.numpy())# 散点图
        plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5)
        plt.text(0.5, 0, 'loss = %.4f' % loss.data.numpy(), fontdict={'size': 20, 'color': 'red'})
        plt.pause(0.1)
    plt.ioff()
    plt.show()

print(net)

Net(
(hidden): Linear(in_features=1, out_features=15, bias=True)
(predict): Linear(in_features=15, out_features=1, bias=True)
)

Pytorch学习笔记(一)
2、CLassification

import torch
from torch.autograd import Variable
import torch.nn.functional as F # 拿到一些激励函数
import matplotlib.pyplot as plt

## make fake data
n_data = torch.ones(100, 2)
x0 = torch.normal(2*n_data, 1)      # class0 x data (tensor), shape=(100, 2)
y0 = torch.zeros(100)               # class0 y data (tensor), shape=(100, 1)
x1 = torch.normal(-2*n_data, 1)     # class1 x data (tensor), shape=(100, 2)
y1 = torch.ones(100)                # class1 y data (tensor), shape=(100, 1)
# 数据和标签转换为 torch 中默认的形式
x = torch.cat((x0, x1), 0).type(torch.FloatTensor)  # shape (200, 2) FloatTensor = 32-bit floating; cat合并
y = torch.cat((y0, y1), ).type(torch.LongTensor)    # shape (200,) LongTensor = 64-bit integer
# 现在autograd 直接支持tensors了
# x, y = Variable(x), Variable(y) # 放在Varible的篮子里

plt.scatter(x.data.numpy()[:, 0], x.data.numpy()[:, 1], c=y.data.numpy(), s=50, lw=0, cmap='RdYlGn')
plt.show()

## method 1
class Net(torch.nn.Module): # 继承torch的模块
    def __init__(self, n_feature, n_hidden, n_output):# 定义层
        super(Net, self).__init__()# 调用父类的初始化
        self.hidden = torch.nn.Linear(n_feature, n_hidden)
        self.predict = torch.nn.Linear(n_hidden, n_output)

    def forward(self, x):# 前向传递,搭建神经网络,x = inputData
        x = F. relu(self.hidden(x))
        x = self.predict(x) # 回归预测的时候一般不用激励函数,加了relu无法预测负值
        return x

## 训练 + 可视化过程
net1 = Net(2, 10, 2)

## method 2
net2 = torch.nn.Sequential(# 一层一层
    torch.nn.Linear(2, 10),
    torch.nn.ReLU(),# 区别
    torch.nn.Linear(10, 2),
)
print(net1)
print(net2)

plt.ion() # 实时打印
plt.show()

optimizer = torch.optim.SGD(net2.parameters(), lr=0.01) # 网络优化.lr一般小于1

for t in range(100):# 训练100步
    out = net2(x)

    loss = F.cross_entropy(out, y) # 交叉熵,用于多分类问题

    # 优化
    optimizer.zero_grad() # pytorch计算梯度不是覆盖,与上一次的求和,net.parameters手动清0
    loss.backward() # Variable反向传递
    optimizer.step() # 更新参数

    if t % 2 == 0:
        # plot and show learning process
        plt.cla()
        prediction = torch.max(out, 1)[1] # softmax变成prediction,概率
        pred_y = prediction.data.numpy()
        target_y = y.data.numpy()
        plt.scatter(x.data.numpy()[:, 0], x.data.numpy()[:, 1], c=pred_y, s=100, lw=0, cmap='RdYlGn')
        accuracy = float((pred_y == target_y).astype(int).sum()) / float(target_y.size)
        plt.text(1.5, -4, 'Accuracy=%.2f' % accuracy, fontdict={'size': 20, 'color': 'red'})
        plt.pause(0.1)

    plt.ioff()
    plt.show()

print(net1)

Net(
(hidden): Linear(in_features=2, out_features=10, bias=True)
(predict): Linear(in_features=10, out_features=2, bias=True)
)

print(net2)

Sequential(
(0): Linear(in_features=2, out_features=10, bias=True)
(1): ReLU()
(2): Linear(in_features=10, out_features=2, bias=True)

Pytorch学习笔记(一)

3、save_reload

import torch
import matplotlib.pyplot as plt
import torch.nn.functional as F
# torch.manual_seed(1)    # reproducible

# data
x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1)  # x data (tensor), shape=(100, 1)
y = x.pow(2) + 0.2*torch.rand(x.size())  # noisy y data (tensor), shape=(100, 1)
# Pytorch 0.4可以直接用tensors
# x, y = Variable(x, requires_grad=False), Variable(y, requires_grad=False)

def save():
    # save net1
    net1 = torch.nn.Sequential(
        torch.nn.Linear(1, 10),
        torch.nn.ReLU(),
        torch.nn.Linear(10, 1)
    )
    optimizer = torch.optim.SGD(net1.parameters(), lr=0.5)
    # loss_func = torch.nn.MSELoss()

    for t in range(100):
        prediction = net1(x)
        loss = F.mse_loss(prediction, y)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

    # plot result
    plt.figure(1, figsize=(10, 3))
    plt.subplot(131)
    plt.title('Net1')
    plt.scatter(x.data.numpy(), y.data.numpy())
    plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5)

    # 2 ways to save the net
    torch.save(net1, 'net.pkl')  # save entire net,以pkl形式保存
    torch.save(net1.state_dict(), 'net_params.pkl')   # save only the parameters

def restore_net():
    net2 = torch.load('net.pkl')
    prediction = net2(x)

    # plot result
    plt.subplot(132)
    plt.title('Net2')
    plt.scatter(x.data.numpy(), y.data.numpy())
    plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5)

def restore_params():
    net3 = torch.nn.Sequential(
        torch.nn.Linear(1, 10),
        torch.nn.ReLU(),
        torch.nn.Linear(10, 1)
    )
    # copy net1's parameters into net3
    net3.load_state_dict(torch.load('net_params.pkl'))
    prediction = net3(x)

    # plot result
    plt.subplot(133)
    plt.title('Net3')
    plt.scatter(x.data.numpy(), y.data.numpy())
    plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5)
    plt.show()

save()
restore_net()
restore_params()

Pytorch学习笔记(一)
4、batch_train

import torch
import  torch.utils.data as Data

# BATCH_SIZE = 5
BATCH_SIZE = 8
x = torch.linspace(1, 10, 10) # torch tensor
y = torch.linspace(10,1,10) # torch tensor

torch_dataset = Data.TensorDataset(x, y)
loader = Data.DataLoader(
    dataset=torch_dataset,
    batch_size=BATCH_SIZE,
    shuffle=True,#打乱数据
    num_workers=0,# 2线程
)

for epoch in range(3):
    for step, (batch_x, batch_y) in enumerate(loader):
        # training
        print('Epoch: ',epoch,'| Step: ', step, '| batch x: ',batch_x.numpy(), '| batch y: ', batch_y.numpy())

数据个数为10,BATCH_SIZE = 8,EPOCH = 3时

Epoch: 0 | Step: 0 | batch x: [ 2. 1. 8. 9. 4. 5. 10. 3.] |batch y: [ 9. 10. 3. 2. 7. 6. 1. 8.]
Epoch: 0 | Step: 1 |batch x: [6. 7.] | batch y: [5. 4.]
Epoch: 1 | Step: 0 | batch x: [ 1. 10. 6. 9. 2. 5. 4. 8.] | batch y: [10. 1. 5. 2. 9. 6.7. 3.]
Epoch: 1 | Step: 1 | batch x: [3. 7.] | batch y: [8. 4.]
Epoch: 2 | Step: 0 | batch x: [ 4. 7. 10. 8. 9. 6. 5. 2.] | batch y: [7. 4. 1. 3. 2. 5. 6. 9.]
Epoch: 2 | Step: 1 | batch x: [1. 3.] | batch y: [10. 8.]

数据个数为10,BATCH_SIZE = 5,EPOCH = 3时

Epoch: 0 | Step: 0 | batch x: [ 7. 10. 5. 1. 8.] | batch y: [4. 1. 6. 10. 3.]
Epoch: 0 | Step: 1 | batch x: [6. 3. 2. 9. 4.] | batch y: [5. 8. 9. 2. 7.]
Epoch: 1 | Step: 0 | batch x: [4. 7. 2. 5. 1.] | batch y: [ 7. 4. 9. 6. 10.]
Epoch: 1 | Step: 1 | batch x: [ 9. 10. 8. 3. 6.] | batch y: [2. 1. 3. 8. 5.]
Epoch: 2 | Step: 0 | batch x: [ 7. 4. 8. 10. 1.] | batch y: [ 4. 7. 3. 1. 10.]
Epoch: 2 | Step: 1 | batch x: [6. 5. 9. 3. 2.] | batch y: [5. 6. 2. 8. 9.]

5、optimizer

import torch
import torch.utils.data as Data
import torch.nn.functional as F
import matplotlib.pyplot as plt

# hyper para
LR = 0.01
BATCH_SIZE = 32
EPOCH = 12

# fake dataset
x = torch.unsqueeze(torch.linspace(-1, 1, 1000), dim=1)# unsqueeze多加一维
y = x.pow(2) + 0.1*torch.normal(torch.zeros(*x.size()))

# put dateset into torch dataset
torch_dataset = Data.TensorDataset(x, y)
loader = Data.DataLoader(
    dataset=torch_dataset,
    batch_size=BATCH_SIZE,
    shuffle=True,  # 打乱数据
    num_workers=0,  # 2线程
)

# default network
class Net(torch.nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.hidden = torch.nn.Linear(1, 20)   # hidden layer
        self.predict = torch.nn.Linear(20, 1)   # output layer

    def forward(self, x):
        x = F.relu(self.hidden(x))      # activation function for hidden layer
        x = self.predict(x)             # linear output
        return x

if __name__ == '__main__':
    # different nets
    net_SGD = Net()
    net_Momentum = Net()
    net_RMSprop = Net()
    net_Adam = Net()
    nets = [net_SGD, net_Momentum, net_RMSprop, net_Adam] #放在一个list当中

    # different optimizers
    opt_SGD = torch.optim.SGD(net_SGD.parameters(), lr=LR)
    opt_Momentum = torch.optim.SGD(net_Momentum.parameters(), lr=LR, momentum=0.8)
    opt_RMSprop = torch.optim.RMSprop(net_RMSprop.parameters(), lr=LR, alpha=0.9)
    opt_Adam = torch.optim.Adam(net_Adam.parameters(), lr=LR, betas=(0.9, 0.99))
    optimizers = [opt_SGD, opt_Momentum, opt_RMSprop, opt_Adam]

    losse_his = [[],[],[],[]] # record loss

    for epoch in range(EPOCH):
        print(epoch)
        for step,(batch_x, batch_y) in enumerate(loader):
            for net, opt, l_his in zip(nets, optimizers, losse_his):
                output = net(batch_x)  # get output for every net
                loss = F.mse_loss(output, batch_y)  # compute loss for every net
                l_his.append(loss.data.numpy())  # loss recoder

                opt.zero_grad()  # clear gradients for next train
                loss.backward()  # backpropagation, compute gradients
                opt.step()  # apply gradients

    labels = ['SGD', 'Momentum', 'RMSprop', 'Adam']
    for i, l_his, in enumerate(losse_his):
        plt.plot(l_his, label=labels[i])
    plt.legend(loc='best')
    plt.xlabel('Steps')
    plt.ylabel('Loss')
    plt.ylim((0, 0.2))
    plt.show()

Pytorch学习笔记(一)
优化器理论可参考:https://blog.csdn.net/weixin_40170902/article/details/80092628
6、CNN

import os
import torch
import torch.nn as nn
import torch.utils.data as Data
import torchvision
import matplotlib.pyplot as plt
import torch.nn.functional as F # 拿到一些激励函数

# hyper para
EPOCH = 1
BATCH_SIZE = 50
LR = 0.001
DOWNLOAD_MNIST = False

### 1.Mnist digits dataset
# trainning data
if not(os.path.exists('./mnist/')) or not os.listdir('./mnist/'):
    # not mnist dir or mnist is empyt dir
    DOWNLOAD_MNIST = True
train_data = torchvision.datasets.MNIST(
    root='./mnist/',
    train=True,                                     # this is training data;False test data
    transform=torchvision.transforms.ToTensor(),    # Converts Image (0-255)变成(0-1)
                                                    # torch.FloatTensor of shape (C x H x W) and normalize in the range [0.0, 1.0]
    download=DOWNLOAD_MNIST,
)
# Data Loader for easy mini-batch , the image batch shape will be (50, 1, 28, 28)
train_loader = Data.DataLoader(
    dataset=train_data,
    batch_size=BATCH_SIZE,
    shuffle=True,
)

# plot one example
'''
print(train_data.train_data.size())         # [60000, 28, 28]
print(train_data.train_labels.size())       # [60000]
plt.imshow(train_data.train_data[0].numpy(), cmap='gray')# 第一张图
plt.title('%i' % train_data.train_labels[0])
plt.show()
'''
# pick 2000 testing data
test_data = torchvision.datasets.MNIST(
    root='./mnist/',
    train=False
)
test_x = torch.unsqueeze(test_data.test_data, dim=1).type(torch.FloatTensor)[:2000]/255.   # shape from (2000, 28, 28) to (2000, 1, 28, 28), value in range(0,1)
test_y = test_data.test_labels[:2000]

### 2.define CNN
class CNN(nn.Module): # 继承torch的模块
    def __init__(self):
        super(CNN, self).__init__() # 调用父类的初始化
        self.conv1 = nn.Sequential( # 一个典型层包含三级 卷积 ** 池化
            nn.Conv2d(
                in_channels=1,  # input height(彩色图为3,灰度图为1)
                out_channels=16,  # n_filters,同时扫描某一区域的16个不同的特征
                kernel_size=5,  # filter size
                stride=1,  # filter movement/step
                padding=2, # padding=(kernel_size-1)/2 if stride=1;补0以提取边缘特征
            ),  # --> (16, 28, 28)
            nn.ReLU(), # 非线性化 # --> (16, 28, 28)
            nn.MaxPool2d(kernel_size=2),# --> (16, 14, 14)
        )

        self.conv2 = nn.Sequential(
            nn.Conv2d(16, 32, 5, 1, 2),# --> (32, 14, 14)
            nn.ReLU(),  # 非线性化 # --> (32, 14, 14)
            nn.MaxPool2d(2),# --> (32, 7, 7)
        )

        # fully connected layer
        self.out = nn.Linear(32 * 7 * 7, 10)

        def forward(self, x):
             x = self.conv1(x)
             x = self.conv2(x) # -->(batch, 32, 7, 7)
             x = x.view(x.size(0), -1) # -->(batch, 32 * 7 * 7)
             output = self.out(x)
             return output

cnn = CNN()
print(cnn)

optimizer = torch.optim.Adam(cnn.parameters(), lr=LR)   # optimize all cnn parameters
loss_func = nn.CrossEntropyLoss()                       # the target label is not one-hotted

# training and testing
for epoch in range(EPOCH):
    for step, (b_x, b_y) in enumerate(train_loader):   # gives batch data, normalize x when iterate train_loader
        output = cnn(b_x)[0]               # cnn output
        loss = F.cross_entropy(output, b_y)   # cross entropy loss
        optimizer.zero_grad()           # clear gradients for this training step
        loss.backward()                 # backpropagation, compute gradients
        optimizer.step()                # apply gradients

        if step % 50 == 0:
            test_output, last_layer = cnn(test_x)
            pred_y = torch.max(test_output, 1)[1].data.numpy() # softmax变成prediction,概率s
            accuracy = float((pred_y == test_y.data.numpy()).astype(int).sum()) / float(test_y.size(0))
            print('Epoch: ', epoch, '| train loss: %.4f' % loss.data.numpy(), '| test accuracy: %.2f' % accuracy)
            if HAS_SK:
                # Visualization of trained flatten layer (T-SNE)
                tsne = TSNE(perplexity=30, n_components=2, init='pca', n_iter=5000)
                plot_only = 500
                low_dim_embs = tsne.fit_transform(last_layer.data.numpy()[:plot_only, :])
                labels = test_y.numpy()[:plot_only]
                plot_with_labels(low_dim_embs, labels)

# print 10 predictions from test data
test_output, _ = cnn(test_x[:10])
pred_y = torch.max(test_output, 1)[1].data.numpy()
print(pred_y, 'prediction number')
print(test_y[:10].numpy(), 'real number')

该代码有点问题,我再看看