pandas数据加载、存储与文件格式
作者:SeanCheney
链接:https://www.jianshu.com/p/047d8c1c7e14
根据简书的加上一点自己理解, 与其中较为常用有用的
读写文本格式的数据
In [13]: pd.read_csv('examples/ex2.csv', header=None)
Out[13]:
0 1 2 3 4
0 1 2 3 4 hello
1 5 6 7 8 world
2 9 10 11 12 foo
In [14]: pd.read_csv('examples/ex2.csv', names=['a', 'b', 'c', 'd', 'message'])
Out[14]:
a b c d message
0 1 2 3 4 hello
1 5 6 7 8 world
2 9 10 11 12 foo
假设你希望将message列做成DataFrame的索引。你可以明确表示要将该列放到索引4的位置上,也可以通过index_col参数指定”message”:
In [15]: names = ['a', 'b', 'c', 'd', 'message']
In [16]:
pd.read_csv('examples/ex2.csv', names=names, index_col='message')
Out[16]:
a b c d
message
hello 1 2 3 4
world 5 6 7 8
foo 9 10 11 12
如果希望将多个列做成一个层次化索引,只需传入由列编号或列名组成的列表即可:
In [17]: !cat examples/csv_mindex.csv
key1,key2,value1,value2
one,a,1,2
one,b,3,4
one,c,5,6
one,d,7,8
two,a,9,10
two,b,11,12
two,c,13,14
two,d,15,16
In [18]: parsed = pd.read_csv('examples/csv_mindex.csv',
....: index_col=['key1', 'key2'])
In [19]: parsed
Out[19]:
value1 value2
key1 key2
one a 1 2
b 3 4
c 5 6
d 7 8
two a 9 10
b 11 12
c 13 14
d 15 16
虽然可以手动对数据进行规整,这里的字段是被数量不同的空白字符间隔开的。这种情况下,你可以传递一个正则表达式作为read_table的分隔符。可以用正则表达式表达为\s+,于是有:
In [21]: result = pd.read_table('examples/ex3.txt', sep='\s+')
In [22]: result
Out[22]:
A B C
aaa -0.264438 -1.026059 -0.619500
bbb 0.927272 0.302904 -0.032399
ccc -0.264273 -0.386314 -0.217601
ddd -0.871858 -0.348382 1.100491
na_values可以用一个列表或集合的字符串表示缺失值:
In [29]: result = pd.read_csv('examples/ex5.csv', na_values=['NULL'])
In [30]: result
Out[30]:
something a b c d message
0 one 1 2 3.0 4 NaN
1 two 5 6 NaN 8 world
2 three 9 10 11.0 12 foo
字典的各列可以使用不同的NA标记值:
意思是message这一列值为foo, na都置为NaN,将其视为空
In [31]:
sentinels = {'message': ['foo', 'NA'], 'something': ['two']}
In [32]: pd.read_csv('examples/ex5.csv', na_values=sentinels)
Out[32]:
something a b c d message
0 one 1 2 3.0 4 NaN
1 NaN 5 6 NaN 8 world
2 three 9 10 11.0 12 NaN
逐块读取文本文件
在处理很大的文件时,或找出大文件中的参数集以便于后续处理时,你可能只想读取文件的一小部分或逐块对文件进行迭代。
如果只想读取几行(避免读取整个文件),通过nrows进行指定即可:
pd.read_csv('examples/ex6.csv', nrows=5)
要逐块读取文件,可以指定chunksize(行数):
In [874]: chunker = pd.read_csv('ch06/ex6.csv', chunksize=1000)
In [875]: chunker
Out[875]: <pandas.io.parsers.TextParser at 0x8398150>
read_csv所返回的这个TextParser对象使你可以根据chunksize对文件进行逐块迭代。比如说,我们可以迭代处理ex6.csv,将值计数聚合到”key”列中,如下所示:
chunker = pd.read_csv('examples/ex6.csv', chunksize=1000)
tot = pd.Series([])
for piece in chunker:
tot = tot.add(piece['key'].value_counts(), fill_value=0)
tot = tot.sort_values(ascending=False)
然后有:
In [40]: tot[:10]
Out[40]:
E 368.0
X 364.0
L 346.0
O 343.0
Q 340.0
M 338.0
J 337.0
F 335.0
K 334.0
H 330.0
dtype: float64
TextParser还有一个get_chunk方法,它使你可以读取任意大小的块。
将数据写出到文本格式
数据也可以被输出为分隔符格式的文本。我们再来看看之前读过的一个CSV文件:
In [41]: data = pd.read_csv('examples/ex5.csv')
In [42]: data
Out[42]:
something a b c d message
0 one 1 2 3.0 4 NaN
1 two 5 6 NaN 8 world
2 three 9 10 11.0 12 foo
利用DataFrame的to_csv方法,我们可以将数据写到一个以逗号分隔的文件中:
In [43]: data.to_csv('examples/out.csv')
In [44]: !cat examples/out.csv
,something,a,b,c,d,message
0,one,1,2,3.0,4,
1,two,5,6,,8,world
2,three,9,10,11.0,12,foo
当然,还可以使用其他分隔符(由于这里直接写出到sys.stdout,所以仅仅是打印出文本结果而已):
In [45]: import sys
In [46]: data.to_csv(sys.stdout, sep='|')
|something|a|b|c|d|message
0|one|1|2|3.0|4|
1|two|5|6||8|world
2|three|9|10|11.0|12|foo
缺失值在输出结果中会被表示为空字符串。你可能希望将其表示为别的标记值:
In [47]: data.to_csv(sys.stdout, na_rep='NULL')
,something,a,b,c,d,message
0,one,1,2,3.0,4,NULL
1,two,5,6,NULL,8,world
2,three,9,10,11.0,12,foo
如果没有设置其他选项,则会写出行和列的标签。当然,它们也都可以被禁用:
In [48]: data.to_csv(sys.stdout, index=False, header=False)
one,1,2,3.0,4,
two,5,6,,8,world
three,9,10,11.0,12,foo
此外,你还可以只写出一部分的列,并以你指定的顺序排列:
In [49]: data.to_csv(sys.stdout, index=False, columns=['a', 'b', 'c'])
a,b,c
1,2,3.0
5,6,
9,10,11.0
Series也有一个to_csv方法:
In [50]: dates = pd.date_range('1/1/2000', periods=7)
In [51]: ts = pd.Series(np.arange(7), index=dates)
In [52]: ts.to_csv('examples/tseries.csv')
In [53]: !cat examples/tseries.csv
2000-01-01,0
2000-01-02,1
2000-01-03,2
2000-01-04,3
2000-01-05,4
2000-01-06,5
2000-01-07,6
数据库交互 主要
在商业场景下,大多数数据可能不是存储在文本或Excel文件中。基于SQL的关系型数据库(如SQL Server、PostgreSQL和MySQL等)使用非常广泛,其它一些数据库也很流行。数据库的选择通常取决于性能、数据完整性以及应用程序的伸缩性需求。
将数据从SQL加载到DataFrame的过程很简单,此外pandas还有一些能够简化该过程的函数。例如,我将使用SQLite数据库(通过Python内置的sqlite3驱动器):
In [121]: import sqlite3
In [122]: query = """
.....: CREATE TABLE test
.....: (a VARCHAR(20), b VARCHAR(20),
.....: c REAL, d INTEGER
.....: );"""
In [123]: con = sqlite3.connect('mydata.sqlite')
In [124]: con.execute(query)
Out[124]: <sqlite3.Cursor at 0x7f6b12a50f10>
In [125]: con.commit()
然后插入几行数据:
In [126]: data = [('Atlanta', 'Georgia', 1.25, 6),
.....: ('Tallahassee', 'Florida', 2.6, 3),
.....: ('Sacramento', 'California', 1.7, 5)]
In [127]: stmt = "INSERT INTO test VALUES(?, ?, ?, ?)"
In [128]: con.executemany(stmt, data)
Out[128]: <sqlite3.Cursor at 0x7f6b15c66ce0>
从表中选取数据时,大部分Python SQL驱动器(PyODBC、psycopg2、MySQLdb、pymssql等)都会返回一个元组列表:
In [130]: cursor = con.execute('select * from test')
In [131]: rows = cursor.fetchall()
In [132]: rows
Out[132]:
[('Atlanta', 'Georgia', 1.25, 6),
('Tallahassee', 'Florida', 2.6, 3),
('Sacramento', 'California', 1.7, 5)]
你可以将这个元组列表传给DataFrame构造器,但还需要列名(位于光标的description属性中):
In [133]: cursor.description
Out[133]:
(('a', None, None, None, None, None, None),
('b', None, None, None, None, None, None),
('c', None, None, None, None, None, None),
('d', None, None, None, None, None, None))
In [134]: pd.DataFrame(rows, columns=[x[0] for x in cursor.description])
Out[134]:
a b c d
0 Atlanta Georgia 1.25 6
1 Tallahassee Florida 2.60 3
2 Sacramento California 1.70 5
这种数据规整操作相当多,你肯定不想每查一次数据库就重写一次。SQLAlchemy项目是一个流行的Python SQL工具,它抽象出了SQL数据库中的许多常见差异。pandas有一个read_sql函数,可以让你轻松的从SQLAlchemy连接读取数据。这里,我们用SQLAlchemy连接SQLite数据库,并从之前创建的表读取数据:
In [135]: import sqlalchemy as sqla
In [136]: db = sqla.create_engine('sqlite:///mydata.sqlite')
In [137]: pd.read_sql('select * from test', db)
Out[137]:
a b c d
0 Atlanta Georgia 1.25 6
1 Tallahassee Florida 2.60 3
2 Sacramento California 1.70 5