欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

TensorFlow Ubuntu 16.04配置

程序员文章站 2022-06-05 20:41:54
...
TensorFlow的配置方法主要分为两种:
一、通过Python的PIP来进行安装
这种方法相对比较简单,只需要一个命令就可以完成。主要针对不同的用户需求分为CPU安装和GPU安装,
CPU安装:
sudo pip install --upgrade tensorflow
GPU安装:

sudo pip install --upgrade tensorflow-gpu


二、通过源码编译

这种方法虽然比较繁琐,但是这种方法可以有个人的配置,同时还可以编译出适用于Android等平台的库。

首先去github上下载源码,记住一定要下tag版,不要直接git clone,这样获取的版本不一定会稳定。

然后装一下依赖:

sudo apt-get install pkg-config zip g++ zlib1g-dev unzip
sudo add-apt-repository ppa:openjdk-r/ppa
sudo apt-get update
sudo apt-get install openjdk-8-jdk bazel


之后,配置编译

[email protected]:~/TensorFlow/tensorflow-master/tensorflow $ sudo ./configure 
You have bazel 0.5.1- installed.
Please specify the location of python. [Default is /usr/bin/python]: 
Found possible Python library paths:
  /usr/local/lib/python2.7/dist-packages
  /usr/lib/python2.7/dist-packages
Please input the desired Python library path to use.  Default is [/usr/local/lib/python2.7/dist-packages]

Using python library path: /usr/local/lib/python2.7/dist-packages
Do you wish to build TensorFlow with MKL support? [y/N] y
MKL support will be enabled for TensorFlow
Do you wish to download MKL LIB from the web? [Y/n] n
Please specify the location where MKL is installed. [Default is /opt/intel/mklml]: /opt/intel/mkl
Please specify optimization flags to use during compilation when bazel option "--config=opt" is specified [Default is -march=native]: 
Do you wish to use jemalloc as the malloc implementation? [Y/n] 
jemalloc enabled
Do you wish to build TensorFlow with Google Cloud Platform support? [y/N] 
No Google Cloud Platform support will be enabled for TensorFlow
Do you wish to build TensorFlow with Hadoop File System support? [y/N] 
No Hadoop File System support will be enabled for TensorFlow
Do you wish to build TensorFlow with the XLA just-in-time compiler (experimental)? [y/N] 
No XLA support will be enabled for TensorFlow
Do you wish to build TensorFlow with VERBS support? [y/N] 
No VERBS support will be enabled for TensorFlow
Do you wish to build TensorFlow with OpenCL support? [y/N] 
No OpenCL support will be enabled for TensorFlow
Do you wish to build TensorFlow with CUDA support? [y/N] y
CUDA support will be enabled for TensorFlow
Do you want to use clang as CUDA compiler? [y/N] 
nvcc will be used as CUDA compiler
Please specify the CUDA SDK version you want to use, e.g. 7.0. [Leave empty to default to CUDA 8.0]: 
Please specify the location where CUDA  toolkit is installed. Refer to README.md for more details. [Default is /usr/local/cuda]: 
Please specify which gcc should be used by nvcc as the host compiler. [Default is /usr/bin/gcc]: 
Please specify the cuDNN version you want to use. [Leave empty to default to cuDNN 6.0]: 5.1
Please specify the location where cuDNN 5.1 library is installed. Refer to README.md for more details. [Default is /usr/local/cuda]: 
Invalid path to cuDNN  toolkit. Neither of the following two files can be found:
/usr/local/cuda-8.0/lib64/libcudnn.so.5.1
/usr/local/cuda-8.0/libcudnn.so.5.1
.5.1
Please specify the cuDNN version you want to use. [Leave empty to default to cuDNN 6.0]: 5.1.10
Please specify the location where cuDNN 5.1.10 library is installed. Refer to README.md for more details. [Default is /usr/local/cuda]: 
Please specify a list of comma-separated Cuda compute capabilities you want to build with.
You can find the compute capability of your device at: https://developer.nvidia.com/cuda-gpus.
Please note that each additional compute capability significantly increases your build time and binary size.
[Default is: "3.5,5.2"]: 6.1
Do you wish to build TensorFlow with MPI support? [y/N] 
MPI support will not be enabled for TensorFlow
Configuration finished

即可