欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Pandas数据离散化

程序员文章站 2022-06-05 19:05:56
...

一、为什么要离散化

连续属性离散化的目的是为了简化数据结构,数据离散化技术可以用来减少给定连续属性值的个数。离散化方法经常作为数据挖掘的工具。

二、什么是数据的离散化

连续属性的离散化就是在连续属性的值域上,将值域划分为若干个离散的区间,最后用不同的符号或整数 值代表落在每个子区间中的属性值。

离散化有很多种方法,这使用一种最简单的方式去操作

  • 原始人的身高数据:165,174,160,180,159,163,192,184
  • 假设按照身高分几个区间段:150~165, 165180,180195

这样我们将数据分到了三个区间段,我可以对应的标记为矮、中、高三个类别,最终要处理成一个"哑变量"矩阵

三、股票的涨跌幅离散化

我们对股票每日的"p_change"进行离散化
Pandas数据离散化

3.1 读取股票的数据

先读取股票的数据,筛选出p_change数据

data = pd.read_csv("./data/stock_day.csv")
p_change= data['p_change']

3.2 将股票涨跌幅数据进行分组

Pandas数据离散化
使用的工具:

  • pd.qcut(data, q):
    • 对数据进行分组将数据分组,一般会与value_counts搭配使用,统计每组的个数
  • series.value_counts():统计分组次数
# 自行分组
qcut = pd.qcut(p_change, 10)
# 计算分到每个组数据个数
qcut.value_counts()

自定义区间分组:

  • pd.cut(data, bins)
# 自己指定分组区间
bins = [-100, -7, -5, -3, 0, 3, 5, 7, 100]
p_counts = pd.cut(p_change, bins)

3.3 股票涨跌幅分组数据变成one-hot编码

  • 什么是one-hot编码

把每个类别生成一个布尔列,这些列中只有一列可以为这个样本取值为1.其又被称为热编码。

把下图中左边的表格转化为使用右边形式进行表示:
Pandas数据离散化

  • pandas.get_dummies(data, prefix=None)
    • data:array-like, Series, or DataFrame
    • prefix:分组名字
# 得出one-hot编码矩阵
dummies = pd.get_dummies(p_counts, prefix="rise")

Pandas数据离散化

四、小结

  • 数据离散化【知道】
    • 可以用来减少给定连续属性值的个数
    • 在连续属性的值域上,将值域划分为若干个离散的区间,最后用不同的符号或整数值代表落在每个子区间中的属性值。
  • qcut、cut实现数据分组【知道】
    • qcut:大致分为相同的几组
    • cut:自定义分组区间
  • get_dummies实现哑变量矩阵【知道】
相关标签: 数据分析