26. 平衡二叉排序树
对于给定的数组,如果按照之前的方式进行排序的话,有的时候会得到如下的结果
在其中查找数字 5 ,很幸运只需要两步比较就可以得到最后的结果。但是也有可能变为如下的这种情况
如果这个时候我们是要查找 9 的话就需要一直找到最后,所以这种情况是不好的。为了避免这种效率极端低下的查找过程,可以使用平衡二叉树排序树这种数据结构
1. 相关定义
平衡二叉排序树要求每个节点的左右子树有着相同高度,或者要求任何节点的左右节点的左右子树高度差不超过1。
根据定义我们可以判断以下的几棵树是否属于平衡二叉排序树
上面这个满足定义的要求,是一棵平衡二叉排序树。
这棵树看起来像是平衡二叉排序树,因为他的深度满足要求;但实际上它并不是,因为首先不是一棵二叉排序树。
这个也不是平衡二叉排序树,因为它虽然满足了二叉排序树的要求,但是并没有达到平衡的要求。比如说结点 9 的左子树的深度要比右子树的深度大 2,这就超过 1 了。
这是平衡二叉排序树。
2. 实现原理
对于一个给定的数组 [3, 2, 1, 4, 5, 6, 7, 10, 9, 8],如果不适用平衡二叉排序树的生成方法,很有可能得到如下的结果
这个结果明显是查找效率极低的,所以使用如下的平衡二叉排序树的方法。前三个数字组成的数组如下图所示
明显这已经是一个不平衡的二叉排序树,我们可以看到左子树的深度减去右子树的深度都是大于零的,所以树向右旋转得到如下图所示的结果
之后再加上 4 5 两个元素可以得到如下的图像
我们可以看到这个二叉排序树中,对于 2 3 两个结点都是不平衡的,且两者的不平衡因子都是 2 ,在这里是 3 的不平衡导致了 2 不平衡,所以调整 3 4 5 这棵不平衡术就可以了,因为在这两个不平衡点中不平衡因子(BF)都是负数,所以应该将这棵最小不平衡树进行左旋转,如下图所示
再向其中加入 6 这个结点,如下图所示
在这棵树中可以看到只有根节点 2 是不平衡的,且 BF = -2 < 0,所以需要将根节点 2 向左旋转,得到如下的结果
这个时候可以看到树已经不是一个二叉树,所以需要对 3 进行处理,由于 3 小于 4 ,所以将 3 连接在 4 的左子树的最右端,得到如下图所示的结果
然后向其中加入数据节点 7 ,得到如下的结果
其中的 5 6 7 构成了最小不平衡树,将它进行左旋转,得到如下结果
再向其中加入 10 9 两个点,可以发现对于4 6 7 三个结点,它们的 bf = 2 ,所以需要调整二叉排序树,如下图所示
但是这个结点不可以像之前一样通过旋转 7 10 9 这棵子树,因为这个时候, 10 结点的 BF 符号与之前的符号均不相同,所以要首先将 9 10 旋转,之后再将不平衡子树进行旋转,如下图所示
其中左侧是将 9 10 旋转之后得到的结果,而右侧是再经过一层旋转得到二叉平衡树。
最后向树中添加结点 8,得到的结果如下图所示
明显结点 4 的 BF 为正,结点 6 的 BF 为正,但是结点 9 的 BF 为负,这个时候应该先将 8 7 9 10 进行旋转,使得 BF 值相等,然后再调整二叉排序树,如下图所示
经过第一次旋转之后得到的结果如上图中左图所示,明显 4 6 结点不平衡,所以对 6 结点进行左旋转,得到上图中中间的图,这个时候的树不是二叉树,所以需要对 8 进行处理,因为 8 的值比对应的根节点 7 大,所以将它放在根节点 7 右子树的最左侧,得到上图中右图所示的情况,至此完成了平衡二叉树的生成。
3. 代码
#define LH 1
#define EH 0
#define RH -1
typedef struct BiTNode
{
int data;
int bf;
struct BiTNode *lchild, *rchild;
} BiTNode, *BiTree;
void R_Rotate(BiTree *p)
{
BiTree L;
L = (*p)->lchild;
(*p)->lchild = L->rchild;
L->rchild = (*p);
*p = L;
}
void LeftBalance(BiTree *T)
{
BiTree L, Lr;
L = (*T)->lchild;
switch(L->bf)
{
case LH:
(*T)->bf = L->bf = EH;
R_Rotate(T);
break;
case RH:
Lr = L->rchild;
switch(Lr->bf)
{
case LH:
(*T)->bf = RH;
L->bf = EH;
break
case EH:
(*T)->bf = L->bf = EH;
break;
case RH:
(*T)->bf = EH;
L->bf = LH;
break;
}
Lr->bf = EH;
L_Rotate(&(*T)->lchild);
R_Rotate(T);
}
}
int InsertAVL(BiTree *T, int e, int *taller)
{
if( !*T )
{
*T = (BiTree)malloc(sizeof(BiTNode));
(*T)->data = e;
(*T)->lchild = (*T)->rchild = NULL;
(*T)->bf = EH;
*taller = TRUE;
}
else
{
if(e == (*T)->data)
{
*taller = FALSE;
return FALSE;
}
if(e < (*T)->data)
{
if(!InsertAVL(&(*T)->lchild, e, taller))
{
return FALSE;
}
if(*taller)
{
switch((*T)->bf)
{
case LH:
LeftBalance(T);
*taller = FALSE;
break;
case EH:
(*T)->bf = LH;
*taller = TRUE;
break;
case RH:
(*T)->bf = EH;
*taller = FALSE;
break;
}
}
}
else
{
if(!InsertAVL(&(*T)->rchild, e, taller))
{
return FALSE;
}
if(*taller)
{
switch((*T)->bf)
{
case LH:
(*T)->bf = EH;
*taller = FALSE;
break;
case EH:
(*T)->bf = RH;
*taller = TRUE;
break;
case RH:
RightBalance(T);
*taller = FALSE;
break;
}
}
}
}
}